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Abstract. While standard first-order modal logic is quite powerful, it cannot express even very
simple sentences like “I could have been taller than I actually am” or “Everyone could have been
smarter than they actually are”. These are examples of cross-world predication, whereby objects
in one world are related to (sometimes the same) objects in another world. Extending first-order
modal logic to allow for cross-world predication in a motivated way has proven to be notoriously
difficult. In this paper, I argue that the standard accounts of cross-world predication all leave some-
thing to be desired. I then propose an account of cross-world predication based on quantified hybrid
logic and show how it overcomes the limitations of these previous accounts. I will conclude by
discussing various philosophical consequences and applications of such an account.

§1 Introduction
Consider the following sentence:

(Tall) I could have been taller than I actually am.

Such a sentence cannot be expressed in standard first-order modal logic. To see why, let
Taller be a taller-than predicate, where “Taller(x , y)” is read as “x is taller than y”, and
let me be a constant denoting me. Now, ask yourself: how would one formalize (Tall)? It
doesn’t take much to see that

◇Taller(me,me) (1)

is no good. For this says that there’s a possible world where I (in that world) am taller than
myself (in that world). But this is simply nonsense: nothing can be taller than itself.

Does adding an actuality operator @ help? No. For

@◇Taller(me,me) (2)

says that actually, there’s a possible world where I (in that world) am taller than myself (in
that world), which is just as nonsensical as before. And

◇@Taller(me,me) (3)

is equivalent to @Taller(me,me), which says (nonsensically) that I am actually taller than
myself. It doesn’t seem like any of the straightforward attempts to formalize (Tall) in first-
order modal logic work.

Consider another example:
*Many thanks to Johan van Benthem, Russell Buehler, Balder ten Cate, Sophie Dandelet, Melissa Fusco,
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(Smart) Everyone could have been smarter than they actually are.
Let Smarter be a smarter-than predicate, where “Smarter(x , y)” is read as “x is smarter than
y”. How would one formalize (Smart)? Obviously,

◇@x Smarter(x , x) (4)

won’t do. This says that in some possible world, everyone (in that world) is smarter than
themselves (in that world)—nonsense. Similarly,

@x◇Smarter(x , x) (5)

doesn’t work, since this says that everyone has a possible world where they (in that world)
are smarter than themselves (in that world)—again, nonsense. And one can check that
adding an actuality operator doesn’t help; no matter where you put @ in either (4) and (5),
the reading one obtains is nonsense. Again, no straightforward attempt at formalization
is successful.

Finally, consider a slightly more complicated example:
(Polar) A polar bear could be bigger than a grizzly bear could be.1
Semi-formally, this says that there’s a possible world w and a polar bear x in w such that,
for any possible world v, and for any grizzly bear y in v, x in w is bigger than y is in v.

After adding the appropriate predicates once more, how would one formalize (Polar)?
Unfortunately, the most natural attempt yields

◇Dx (Polar(x) ^◻@ y (Grizzly(y) Ñ Bigger(x , y))) , (6)

which, while not nonsense, isn’t a correct formalization of (Polar). For (6) says that there’s
a possible world w and a polar bear x in w such that, for any possible world v, and for any
grizzly bear y in v, x in v is bigger than y in v. But what we want is for x in w to be bigger
than y in v—it’s x’s size in w that places an upper bound on how big a grizzly bear can get.
And as one can check, no permutation of the modals and quantifiers, nor any addition of
an actuality operator, yields a correct formalization of (Polar). Once again, we’re stuck.

Now, to be fair, such arguments aren’t proofs. Just because the most straightforward at-
tempt to formalize an ordinary sentence into a formal language fails, it doesn’t follow that
there aren’t more subtle or indirect ways to formalize that sentence. However, using stan-
dard techniques from modal model theory, these informal arguments can be backed up
by rigorous proof: one can prove these sentences really aren’t expressible in any standard
first-order modal logic (see §A.3).

Sentences like (Tall), (Smart), and (Polar) are examples of cross-world predications,2
which involve relating objects in one world to (perhaps the same) objects in another world.
That is, cross-world predications are predications between objects across worlds rather than
within worlds. First-order modal logic, as we’ve just seen, is unequipped to formalize even
very simple examples of cross-world predication, and it’s not clear what kind extension is
needed to accommodate them. Call this the problem of cross-world predication.

The problem of cross-world predication is widespread, and a solution to it would have
broad applications. I will illustrate with three such applications.

1Originally from von Stechow [1984, p. 35].
2I borrow the terminology from Wehmeier [2012].
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Application 1: Fiction. Consider a famous puzzle in the philosophy of fiction. Both of
these sentences seem true:

(Detective) Sherlock Holmes is a detective.

(Non-exist) Sherlock Holmes does not exist.

However, they also seem incompatible. In order to be a detective, one must exist. If Holmes
doesn’t exist, then he can’t be a real detective. What’s going on?

One view, which I’ll call the operator view of fiction, is that when we assert a sentence
like (Detective), we really mean to be asserting it as if it were in the scope of some kind of
operator, like “in the Holmes stories”, which is amenable to a modal treatment. So on this
view, what (Detective) typically means is something like:

(Dectective*) In the Holmes stories, Sherlock Holmes is a detective.

which, semi-formally, says that in all fictional worlds w compatible with the Homles sto-
ries, Sherlock Holmes in w is a detective.

But here’s a problem for the operator view. Consider the following sentence:3

(Bilbo) Bilbo in The Lord of the Rings is taller than Thumbelina in Thumbelina.

Suppose we have operators like rLotRs for “in all fictional worlds compatible with The Lord
of the Rings” and rThumbs for “in all fictional worlds compatible with Thumbelina”. How
do we express (Bilbo) with such operators? Clearly,

rLotRs Taller(bilbo, thumb) (7)

doesn’t work since it says that, in The Lord of the Rings, Bilbo is taller than Thumbelina. But
Thumbelina doesn’t even exist in The Lord of the Rings. Similarly,

rLotRs rThumbs Taller(bilbo, thumb) (8)

doesn’t work since Bilbo doesn’t exist in Thumbelina. Once again, we can’t seem to find an
adequate formalization of this rather natural thought.

It’s not hard to see that (Bilbo) is just a special case of cross-world predication—or
rather, cross-fictional predication. As we’ve just seen, sentences like (Bilbo) could be used
as a preliminary criticism of the operator view of fiction. But if we had a way of solving the
problem of cross-world predication, we might also have an analogous way of defending
the operator view of fiction.

Application 2: Counteridenticals. Counterfactuals provide very natural examples of
cross-world predication. For example, we might say “If I were taller, I would be a basket-
ball player” to mean that if I were taller than I actually am, I would be a basketball player.
But consider the following sentence:

(Horse) If I were you, I wouldn’t bet on that horse.

3From Button [2012, p. 245].
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It’s difficult to say exactly how to understand sentences like (Horse), even semi-formally.
Such sentences are known as counteridenticals, which, very roughly, involve counterfac-
tuals whose antecedent is some kind of identity claim.4

So how do we semi-formalize (Horse)? Notice the naïve thought doesn’t work: we can’t
read (Horse) as saying that in the nearest possible world where I am identical to you, I (in
that world) don’t bet on that horse. For one thing, it’s simply unclear how I could possibly
be identical to you. But moreover, the relation in the antecedent of counteridenticals isn’t
generally reflexive, symmetric, or transitive. For instance, against reflexivity, the sentence

(Bold) I would be bolder if I weren’t me.

is non-trivial. But it would involve an impossible antecedent if the antecedent was inter-
preted literally. Against symmetry, (Horse) isn’t equivalent to:

(Horse*) If you were me, I wouldn’t bet on that horse.

And against transitivity, this sentence doesn’t seem necessarily true, but it would be if we
interpret these as identity statements:

(Sally) If I were you and you were Sally, I would be Sally.

Furthermore, such an analysis of counteridenticals would render the following (obviously
sensical) sentence nonsensical:

(Star) If I were you and you were me, I would be a rock star and you wouldn’t.

In the nearest possible world where we’re both identical, we can’t have conflicting prop-
erties. Hence, so-called “counteridenticals” can’t be literally interpreted as counterfactuals
with identity statements in the antecedent. Something else must be going on.

Here’s a rather plausible reading of (Horse): in the nearest possible world where “I am
in your shoes”, I wouldn’t bet on that horse (in that world). Now, how we interpret “in
your shoes” will most likely vary with the context. Let’s set aside this context-sensitivity
for now and just stipulate a “in your shoes” predicate, Shoes(x , y), where “Shoes(x , y)”
is read as “x is in the same position as y”, or more loosely “x is in y’s shoes”. Such an
approach seems quite natural, and has been suggested elsewhere.5

But this approach suffers a problem. For clearly, we can’t formalize (Horse) as:

Shoes(me, you) � ¬Bet(me, horse). (9)

This says that in the nearest possible world where I (in that world) am in the same position
that you in that world are in, I don’t bet on that horse. But we want to consider the nearest
possible world where I (in that world) am in the same position that you are actually in.

Once again, it’s clear that this problem is just a special case of the problem of cross-
world predication—it’s just one where the cross-world predication is in the antecedent of
a counterfactual. So, assuming a solution to cross-world predication is compatible with the
standard analysis of counterfactuals, a solution to the problem of cross-world predication
will generate a solution to this problem for this approach to counteridenticals.

4I’m grateful to Mike Deigan for drawing my attention to these kinds of sentences.
5For instance, Pollock [1976, pp. 6–7], though Pollock thinks it has several problems (pp. 114–115).
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Application 3: Supervenience. Finally, consider one version of a famous thesis in the
philosophy of mind:

(Super) The mental supervenes on the physical—there can’t be any difference in the men-
tal without a difference in the physical.

Lewis [1986, pp. 14–17] argued that such a thesis couldn’t be expressed in first-order modal
logic. Let „M and „P be predicates where “x „M y” and “x „P y” are read respectively
as “There’s no mental difference between x and y” and “There’s no physical difference
between x and y”. The natural attempt to formalize (Super) would be:

◻@x @ y (x „P y Ñ x „M y) . (10)

But (10) is too weak. It says that for all worlds w, and for any x and y, if there’s no physical
difference between x and y in w, then there’s no mental difference between x and y in w.
But as Lewis [1986, p. 16] points out, (Super) says something stronger. It says that if x
in some world w is not physically different from y in some world v, then x in w is not
mentally different from y in v. Even if the supervenience thesis was upheld within every
world, it wouldn’t follow that the supervenience thesis was upheld across every world.

You can probably guess how the story goes—(Super) is yet another instance of cross-
world predication that resists formalization into first-order modal logic. Thus, if we can
solve the problem of cross-world predication, it might in doing so lend us useful tools for
framing important philosophical debates.

The problem of cross-world predication is not new. A number of philosphers and logi-
cians have theorized about different ways to extend or revise first-order modal logic to ac-
commodate cross-world predication. However, as we’ll see below, most of the approaches
that have been proposed are unsatisfactory. Many approaches contain some gap in expres-
sive power, rendering them too weak to capture cross-world predication in full generality.
Others, while powerful enough to express cross-world predication in full, have a number
of odd, undesirable features. None of these approaches strikes the right balance between
expressive power and parsimony.

The goal of this paper is to present a parsimonious solution to the problem of cross-
world predication and to provide a principled motivation for its adoption. As I’ll show,
the approach defended here is, on the one hand, powerful enough to capture cross-world
predication while, on the other hand, more conservative and more unified than previous
approaches.

An outline of the paper is as follows. In §2, we’ll briefly examine a phenomenon which
is closely related to cross-world predication, and motivate seeking a unified solution to
both problems. In §3, we’ll briefly recount the standard syntax and semantics for (two-
dimensional) first-order modal logic. In §4–6, I present and criticize some accounts of
cross-world predication that have already been proposed in the literature. In §7, I present
another account, based on quantified hybrid logic, and show how it overcomes the difficulties
of the previous views. I will conclude with a philosophical discussion in §8.
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§2 Cross-world Quantification
Before diving in, let’s examine another phenomenon, similar to cross-world predication,
which also evades formalization in first-order modal logic. Consider the sentence:

(Rich) The rich could have all been poor.6

Semi-formally, this says (at least on one reading) that there’s a possible world v such that
everyone in the actual world w that’s rich in w is poor in v.

Now, whether or not (Rich) is expressible in first-order modal logic depends on whether
the quantifiers we use are actualist (that is, ranging over the local domain of the world of
evaluation) or possibilist (that is, ranging over the global domain of the whole model).

If we only use actualist quantifiers, then (Rich) isn’t expressible in first-order modal
logic (even with the actually operator @). Consider a first attempt at formalization:

◇@x (@Rich(x) Ñ Poor(x)) . (11)

Semi-formally, this says that there’s a possible world v such that anyone in v that’s rich
in the actual world w is poor in v. But this is too weak; we want to quantify over every
actual rich person in w, not just those in v. In particular, (11) would be true if v was the
only accessible world from w, and if no one in w existed in v; but (Rich) wouldn’t be true.

We could try to resolve this issue by pulling the quantifier out, yielding

@x◇ (@Rich(x) Ñ Poor(x)) , (12)

which, assuming there are accessible worlds, will be equivalent to

@x (@Rich(x) Ñ ◇Poor(x)) . (13)

But (13), unlike (Rich), could be satisfied in a situation where every actual rich person
has a different possible world in which they are poor, even when there’s no single possible
world where they are all poor together. Thus, at least when we restrict ourselves to actualist
quantifiers, first-order modal logic cannot express (Rich), even with @.7

If we use the possibilist quantifier Π instead of @, then

◇Πx (@Rich(x) Ñ Poor(x)) (14)

is a fine formalization of (Rich). For this says that there’s a possible world v such that
anyone in the entire model that’s rich in the actual world w is poor in v. But, presumably,
if Rich is to really mean “is rich” in our models, we’ll need to impose a semantic con-
straint that nothing could be rich at a world without existing at that world: being rich is an
existence-entailing property. So adding this contraint to our models, (14) equivalently says
that there’s a possible world v such that anyone in w that’s rich in w is poor in v—precisely
what (Rich) says.

6From Cresswell [1990, p. 34].
7There are several proofs that first-order modal logic without @ can’t express (Rich), regardless of whether

we use possibilist or actualist quantifiers [Hodes, 1984; Wehmeier, 2001]. A proof that adding @ doesn’t help
(at least for the language with just actualist quantifiers) can be found in Kocurek [2015].
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Some might use this as an argument in favor of adopting a possibilist reading of the
quantifiers over an actualist reading. However, we’re not that much better off with possi-
bilist quantification. For consider the necessitation of (Rich):

(Rich*) Necessarily, the rich could have all been poor.

Semi-formally, at least on one reading, this says that in all possible worlds v, there’s a pos-
sible world u such that everyone in v that’s rich in v is poor in u. This simple modification
of (Rich) is inexpressible in first-order modal logic, even with possibilist quantification. To
illustrate, consider the necessitation of (14):

◻◇Πx (@Rich(x) Ñ Poor(x)) . (15)

This says that in every possible world v, there’s a possible world u where everyone that’s
rich in the actual world w is poor in u. But we just want to consider everyone that’s rich in v,
not in w—the @ takes us back too far. Although possibilist quantification offers a solution
to the formalization of (Rich), it can’t handle even slightly more complicated examples.8

Both (Rich) and (Rich*) are examples of what I will call cross-world quantification,
which involves quantifying outside the scope of a modal operator. As we’ve just seen, first-
order modal logic is unequipped to formalize even very simple examples of cross-world
quantification. Call this the problem of cross-world quantification.

While many philosophers have discussed (Rich) and have sought a solution to this
problem, not many have offered a combined solution to the problems of cross-world predi-
cation and cross-world quantification. But in retrospect, this is quite odd, since both phe-
nomena seem deeply connected. It would be nice if a solution to the problem of cross-
world predication managed to also account for cross-world quantification and perhaps
even explain what the connection between the two is. As we’ll see, the account proposed
in this paper (presented in §7) can do this.

§3 First-Order Modal Logic
Before we can examine the various extensions of first-order modal logic to accommodate
cross-world predication, we’ll need to first get clear about what exactly we’re taking first-
order modal logic to be. In setting out the details of first-order modal logic, we are forced to
make a number of hard choices regarding its syntax, models, and semantics. Some of these
choices are methodological, others philosophical. We review the most important choices
below. For many of the others, we will silently make a decision and carry on without
comment. In all cases, our silent decisions are motivated towards making first-order modal
logic as expressive as possible.

§3.1 Syntax

We start by laying out the syntax for our first-order modal language, L1M. The signature
we adopt is the same throughout. Let:

8The proof of this claim can also be found in Kocurek [2015].
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• CON = tc1 , c2 , c3 , . . .u (the set of constants);
• VAR = tx1 , x2 , x3 , . . .u (the set of (object) variables);
• TERM1M B CON Y VAR (the set of (object) terms or L1M-terms);
• PREDn = tPn

1 , P
n
2 , P

n
3 , . . .u for each n ě 1 (the set of n-place predicates);

• PRED B
Ť

ně1 PREDn (the set of predicates).

The set of formulas in L1M or L1M-formulas, FORM1M, is defined recursively:

φ F Pn (τ1 , . . . , τn) | τ1 « τ2 | E(τ1) | ¬φ | (φ ^ φ) | ◻φ | @φ | @x φ

where Pn P PREDn , τ1 , . . . , τn P TERM1M, and x P VAR. The usual abbreviations for _,
Ñ, D, and ◇ all apply. To be clear, « is the identity symbol, E is an existence predicate,
and @ an actuality operator.9 We’ll let L1M

Π
be the language obtained by adding to L1M

the universal possibilist quantifier Π (the existential counterpart is Σ). When no ambiguity
arises, we’ll drop parentheses for readability.

§3.2 Models
Next, we look at how first-order modal models are defined.

Definition 3.1 (First-Order Modal Models). An L1M-model, or (modal) model, is an
ordered tupleM = xW, R,D , δ, Iy where:
• W is a nonempty set (the state space);
• R Ď W ˆ W (the accessibility relation), where Rrws B tv P W | R(w , v) u;
• D is a nonempty set (the (global) domain);
• δ : W Ñ ℘ (D) is a function (the local domain assignment), where for each

w P W , δ(w) is the local domain of w;
• I is a function (the interpretation function) such that:

– for each c P CON, I(c , w) P D;
– for each Pn P PREDn , I(Pn ,w) Ď Dn .

Let me emphasize three features of our models. First, we don’t require constants to
denote rigidly—a constant may denote different objects in different worlds. Second, our
models are variable domain models—some objects may fail to exist in some worlds. Third,
we don’t require that objects exist in order to instantiate predicates—non-existents can still
have properties, stand in relations, etc. These assumptions are made to construe “stan-
dard” first-order modal logic in its most general form and may be dropped if desired.
They won’t affect the limitations considered in what follows.

9One could consider adding λ-abstraction, in the spirit of Fitting and Mendelsohn [1998, Chps. 9-10],
but doing so doesn’t increase the expressive power enough to solve the problems of cross-world predication
and quantification [Kocurek, 2015]. All λ-abstraction does is essentially allow for “rigidification” of non-rigid
terms, which doesn’t help much (though see Fitting [2013] for an approach that combines λ-abstraction with
the approach in §5 for sentences like (Tall) without quantifiers).
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§3.3 Semantics
Finally, we examine the semantics for first-order modal logic.

Definition 3.2 (Variable Assignment). LetM be an L1M-model. A variable assign-
ment forM is a function assigning members of its global domain to variables. The
set of variable assignments forM will be VA(M).

If a variable assignment g onM agrees with a variable assignment g1 onM on
every variable except possibly x, then g and g1 are x-variants, g „x g1. The variable
assignment grx ÞÑ as or (more compactly) gx

a is the x-variant of g that sends x to a.

With @ in our language, our semantics will need to be two-dimensional (à la Davies
and Humberstone [1980, pp. 4-5]). That is, indices will have two worlds. The first world
is to be interpreted as the world “considered as actual”, and the second as the world of
evaluation.

Definition 3.3 (Denotation). Let τ be a term, letM be an L1M-model, let w , v P W ,
and let g P VA(M). The denotation of τ at xM ,w , v , gy, ⟦τ⟧M ,w ,v ,g , is defined as
follows:

⟦τ⟧M ,w ,v ,g
�

#

I(c , v) if τ � c where c P CON

g(x) if τ � x where x P VAR.

Note that w (the world considered as actual) makes no difference to denotations. Nev-
ertheless, we include it to ease the transition into §6, where it will make a difference.

Definition 3.4 (Satisfaction). The satisfaction relation, ,, is defined recursively over
L1M

Π
-formulas, for all L1M-models M = xW, R,D , δ, Iy, all w , v P W , and all g P

VA(M):

M ,w , v , g , Pn (τ1 , . . . , τn) ô
@

⟦τ1⟧M ,w ,v ,g , . . . , ⟦τn⟧M ,w ,v ,gD

P I(Pn , v)

M ,w , v , g , τ « σ ô ⟦τ⟧M ,w ,v ,g
� ⟦σ⟧M ,w ,v ,g

M ,w , v , g , E(τ) ô ⟦τ⟧M ,w ,v ,g P δ(v)
M ,w , v , g , ¬φ ô M ,w , v , g . φ

M ,w , v , g , φ ^ ψ ô M ,w , v , g , φ andM ,w , v , g , ψ

M ,w , v , g , ◻φ ô @v1 P Rrvs : M , w , v1 , g , φ

M ,w , v , g , @φ ô M ,w ,w , g , φ

M ,w , v , g , @x φ ô @a P δ(v) : M ,w , v , gx
a , φ

M ,w , v , g , Πx φ ô @a P D : M , w , v , gx
a , φ.

If Γ is a set of L1M
Π

-formulas, thenM ,w , v , g , Γ if for all φ P Γ,M ,w , v , g , φ.
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§4 The Two-Sorted Language
We now turn to the various extensions of first-order modal logic that have been proposed
to handle cross-world predication. The first proposal is quite simple: just move to a two-
sorted language—one sort for objects, the other for worlds.

§4.1 Formalism
Here’s what such a proposal would look like. The signature of this two-sorted language,
L2S, will include CON and VAR as before, but will also include the following set:

• SVAR = ts1 , s2 , s3 , . . .u (the set of state variables).

The set of (object) terms in L2S or L2S-terms, TERM2S, is defined as follows:

τ F x | c(s)

where x P VAR, c P CON, and s P SVAR. In other words, in L2S, c is treated as a unary
function symbol. The reason for doing this is that we allowed for constants in L1M to be
non-rigid. To capture this in L2S, we need some way of keeping track of what world we’re
evaluating the denotation of c relative to. If we had required constants in L1M to be rigid,
then we could have just treated constants inL1M as constants inL2S also. In what follows,
if c is meant to be interpreted as a rigid constant in L1M, we’ll write “c” in L2S-formulas
in place of “c(s)” for some arbitrary s.

In place of PREDn , we have following set in our signature:

• PREDn{m =
!

Pn{m
1 , Pn{m

2 , Pn{m
3 , . . .

)

for each n ,m ě 1 (the set of n{m-place predi-
cates).

For a n{m-place predicate Pn{m , n is the object-arity, while m is the state-arity. Thus, Pn{m

takes exactly n object terms and m state variables as arguments to be well-formed.10
The set of formulas in L2S or L2S-formulas, FORM2S, is defined recursively:

φ F Pn{m (τ1 , . . . , τn ; t1 , . . . , tm) | τ1 « τ2 | t1 « t2 | E(τ1; t1) | R(t1 , t2)
| ¬φ | (φ ^ φ) | @x φ | @t φ

where Pn{m P PREDn{m , τ1 , . . . , τn P TERM2S, t , t1 , . . . , tm P SVAR, and x P VAR.11 The
models and semantics for L2S are just the standard models and semantics of fist-order
logic with two sorts. The details are left to §A.

Using this two-sorted language, we can formalize (Tall), (Smart), (Polar), (Rich), and
(Rich*) (where by convention s picks out the starting world of evaluation) as follows:12

10We’ll use “;” to separate object terms and state variables. Also, we’ll use “Pn” in place of “Pn{1”.
11We won’t really need formulas of the form t1 « t2 in this section, but we include them for the sake of

generality. Such L2S-formulas will be discussed in §8.
12The formalizations assume possibilist object quantifiers, but the actualist readings could be obtained by

relativizing the object quantifiers to E appropriately. We also assume (just for simplicity) that we always start
truth evaluation at diagonal points of evaluation, whereby the world considered as actual is the world of
evaluation. That way, we don’t need to treat separate readings of the sentences, where the free state variables
either pick out the starting world of evaluation or the world considered as actual.
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§4 The Two-Sorted Language Alex Kocurek

(Tall) I could have been taller than I actually am.

Dt (R(s , t) ^ Taller (me,me; t , s)) (16)

(Smart) Everyone could have been smarter than they actually are.

@x Dt (R(s , t) ^ Smarter(x , x; t , s)) (17)

(Polar) A polar bear could be bigger than a grizzly bear could be.

Dt rR(s , t) ^ Dx rPolar(x; t) ^ @t1 (R(t , t1) Ñ @ y (Grizzly(y; t1) Ñ Bigger(x , y; t , t1)))ss

(18)

(Rich) The rich could have all been poor.

Dt (R(s , t) ^ @x (Rich(x; s) Ñ Poor(x; t))) (19)

(Rich*) Necessarily, the rich could have all been poor.

@s Dt (R(s , t) ^ @x (Rich(x; s) Ñ Poor(x; t))) . (20)

As one can check, all of the other example sentences mentioned so far can be formalized
in L2S in a similar manner.

§4.2 Expressive Power

Two facts about L2S are important to note. First, every L1M-formula is equivalent to some
L2S-formula. Second, not every L2S-formula is equivalent to some L1M-formula.

To see why the first fact holds, one can just translate every L1M-formula into an equiv-
alent L2S-formula, just as one would translate every propositional modal formula into a
first-order correspondence language.13 The proof that this translation is accurate is sketched
in §A.

Definition 4.1 (Standard Translation). Let τ be a L1M-term, and let s , t P SVAR. The
standard translation of τ in xs , ty, sts ,t (τ), is a L2S-term defined as follows:

sts ,t (τ) �

#

c(t) if τ � c where c P CON

x if τ � x where x P VAR.

13See e.g., Blackburn et al. [2001].
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Let φ be aL1M
Π

-formula, and let s , t P SVAR. The standard translation of φ in xs , ty,
STs ,t (φ), is a L2S-formula defined recursively:

STs ,t (Pn (τ1 , . . . , τn)) � Pn (sts ,t (τ1) , . . . , sts ,t (τn) ; t)

STs ,t (τ1 « τ2) � sts ,t (τ1) « sts ,t (τ2)

STs ,t (E(τ)) � E(sts ,t (τ) ; t)

STs ,t (¬φ) � ¬ STs ,t (φ)

STs ,t (φ ^ ψ) � STs ,t (φ) ^ STs ,t (ψ)

STs ,t (◻φ) � @t1
(
R(t , t1) Ñ STs ,t1 (φ)

)
STs ,t (@φ) � STs ,s (φ)

STs ,t (@x φ) � @x
(
E(x; t) Ñ STs ,t (φ)

)
STs ,t (Πx φ) � @x STs ,t (φ) .

where t1 is the next state variable not occurring anywhere in STs ,t (φ).

To see why the second fact holds, look more closely at how we formalize examples of
cross-world predication. Each of (16)–(18) requires the presence of some 2{2-place predi-
cate. But a cursory inspection of Definition 4.1 reveals that noL1M-formula ever translates
into a 2{2-place predicate, and indeed no translated formula would be equivalent to a sim-
ple, atomic 2{2-place formula. This argument is made more precise in §A.

The situation is a bit trickier with cases of cross-world quantification. In (19)–(20), there
is no n{m-predicate where m ą 1. Thus, the argument above does not apply. One can
supply a different argument by appealing to the notion of a bisimulation, familiar from
standard modal model theory. The details are in Kocurek [2015].

§4.3 Are We Done?

Is the two-sorted languageL2S the best solution to the problem of cross-world predication?
A number of philosophers think so. For instance, Lewis [1986, pp. 13–14], Melia [2003, p.
32], and Mackay [2013] argue that the only viable solution to the problem of cross-world
predication is to adopt L2S. And philosophers such as Cresswell [1990] and Melia [2003,
pp. 31–32] think that we will inevitably need to use L2S to solve the problem of cross-
world quantification. If these philosophers are correct, then the ascent toL2S is inevitable.
So why delay the inevitable?

Three reasons. First, a number of philosophers are mistaken. As we’ll see below, there
are strictly less expressive formal languages that are capable of dealing with a number of
the problems many have claimed we need the two-sorted language to solve—the ascent is
not inevitable. And since we’re seeking a parsimonious solution to the problems of cross-
world predication and quantification, the two-sorted language is best seen as a baseline,
rather than our final answer.

Second, many will feel that the two-sorted approach is unsatisfactory. As we’ll discuss
in §8, the two-sorted language can make distinctions that one might think aren’t real dis-
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tinctions. Moreover, the fact that such a language like the two-sorted language is powerful
enough to express cross-world predication is hardly an insightful observation. It essen-
tially amounts to the claim that cross-world predications express well-defined thoughts:
for what can be said clearly can be said in a first-order language. It should be obvious that a
language as powerful as the two-sorted language has the capacity to express cross-world
predication.

But this observation, in itself, doesn’t give us any insight into cross-world predication—
it doesn’t get at the heart of the matter. Compare this with ordinary necessity: we could
have just used the two-sorted language to analyze intra-world modal claims like “It could
have rained” from the start. But then we would have deprived ourselves of much of the
insight that derives from the modal framework. So while we could surrender to the two-
sorted language, let us seek a more minimal solution first.

§5 The Degree Approach
Here’s a very simple proposal to solve to the problem of cross-world predication. Consider
the following sentence:

(Height) My height could have been greater than my actual height.

Intuitively, (Tall) and (Height) say the same thing: (Height) is just a paraphrase of (Tall).
So suppose we took this paraphrase at face value by including in our object language the
ability to talk directly about heights. Then a natural formalization of (Tall) is obtained as
follows:14

Dh (Height(me, h) ^◇Dh1 (Height(me, h1) ^ h ă h1)) (21)

where Height and ă are predicates in the object language, and where h and h1 are intended
to be variables over “heights”, which are explicitly included in the domain of a model.

All of the examples of cross-world predication that we’ve encountered thus far seem
formalizable in a similar manner. For instance, (Smart) can be formalized as:

(IQ) Everyone could have had an IQ greater than their actual IQ.

@x Di (Intelligence(x , i) ^◇Di1 (Intelligence(x , i1) ^ i ă i1)) (22)

where i and i1 are intended to be variables over “IQs”. As another example, (Polar) can be
formalized as:

(Size) A polar bear could have a size greater than the size any grizzly bear could have.

◇Dx (Polar(x) ^ Ds (Size(x , s) ^◻@ y @s1 (Grizzly(y) ^ Size(y , s1) Ñ s1 ă s))) (23)
14Normally, we would need (or want) to add @ in front of all our formalizations to ensure that the shifted

worlds are accessible from the actual world, so that the formalization can more accurately capture the meaning
of the sentence in context. But as noted in footnote 12, since we’re assuming our starting point of evaluation
is a diagonal one, we may drop @ without loss.
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where s and s1 are intended to be variables over “sizes”. It seems as though the problem
of cross-world predication is not so hard to solve after all. Call this the degree approach.15

Many will have the feeling that this solution is at best a hack. The reason—or so I will
argue—is that while this solution does seem powerful enough to deal with the problem of
cross-world predication, the way in which it deals with it is unnatural.

§5.1 Formalism
Let’s see how the degree approach would work. For simplicitly, let’s suppose we’re just
dealing with one kind of degree. Generalization is straightforward. The syntax for the
degree language LD is constructed from a two-sorted first-order signature, similar to the
one for L1M in §3.1, except we add:

• DEG = th1 , h2 , h3 , . . .u (the set of degree variables);

and replace PREDn with:

• PREDn{m =
!

Pn{m
1 , Pn{m

2 , Pn{m
3 , . . .

)

where n`m , 0 (the set of n{m-place predicates);

• PRED B
Ť

n ,mě0 PREDn{m (the set of predicates).

In a predicate Pn{m , n is the arity of the object-sort, while m is the arity of the degree-
sort. Thus, Pn{m takes n object terms and m degree variables as arguments to count as
well-formed. So, for instance, Height is a 1{1-ary predicate, while ă is a 0{2-ary predicate.

The set of formulas in LD or LD-formulas, FORMD, is given by:

φ F Pn{m (τ1 , . . . , τn ; h1 , . . . , hm) | τ1 « τ2 | h1 « h2 | E(τ)
| ¬φ | (φ ^ φ) | ◻φ | @φ | @x φ | @h φ

where Pn{m P PREDn{m , τ1 , . . . , τn , τ P CON Y VAR, h1 , . . . , hm , h P DEG, and x P VAR. If
we want, we could add possibilist quantifiers to LD to get LD

p .
Modal models are as in §3.2, except now we add a set of degrees to the model.

Definition 5.1 (Degree Models). An LD-model or degree model is an ordered tuple
M = xW, R,D , δ,Deg, Iy where W , R, D, and δ are as before, where Deg is a set (the
set of degrees), and where I is as before except:
• I(Pn{m ,w) Ď Dn ˆ Degm .

Degree variable assignments are like regular variable assignments, except they also
assign members of Deg to degree variables. The semantic clauses are given below:

15The most well-known defendents of this approach are von Stechow [1984] and Cresswell [1990, Chp. 5].
Fitting [2013] also defends a version of this approach in a language λ-abstraction instead of quantifiers.
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Definition 5.2 (Degree Satisfaction). The degree satisfaction relation or D-satisfaction
relation, ,D, is defined as in Definition 3.4 for D-models, except:

M ,w , v , g ,D Pn{m (τ1 , . . . , τn ; h1 , . . . , hm) ô (˚)
M ,w , v , g ,D h « h1 ô g(h) � g(h1)

M ,w , v , g ,D @h φ ô @d P Deg : M ,w , v , gh
d ,D φ

where (˚) is:
(˚)

@

⟦τ1⟧M ,w ,v ,g , . . . , ⟦τn⟧M ,w ,v ,g ; g(h1), . . . , g(hm)
D

P I(Pn{m , v).

§5.2 Ontological Commitment
One problem philosophers have with the degree approach is its “ontological commitment”
to degrees like heights, sizes, and so forth. Perhaps this is fine for quantitative measures,
but many find it harder to accept the existence of degrees in examples like:

(Happy) Everyone could have been as happy as they could possibly be.

(Difficult) Our homework was as difficult as possible.

(Way) Any way you could be would be better than the way I am.

Respectively, we’d need to accept the existence of degrees of happiness (or a quantity of
“hedons”), levels of difficulty, and degrees of “goodness amongst ways of being”. The
degree approach puts us in an awkward position insofar as it forces us to take a stand
with respect to various ontological questions that it seems logic should remain neutral on.

Now, it’s unclear that this is a real problem for two reasons. First, it’s not obvious that
such a commitment is very costly. Since ordinary discourse makes use of locutions such as
“my happiness” or “the level of difficulty”, perhaps such ontological commitment cannot
be avoided anyway.16 If this is right, then this ontological cost is just a sunk cost.

Second, even if we grant that this ontological commitment would be costly, it’s not ob-
vious that adopting the degree approach really requires such commitments. Consider an
analogous debate. Many linguists and philosophers now argue that English has at least the
full expressive power of a language with explicit quantification over worlds and times.17
Let’s suppose this is correct for a moment. Even so, it’s not clear that English speakers are
therefore committed to modal realism. True, if one isn’t a modal realist, it might be diffi-
cult to account for the success of possible world semantics given this linguistic fact. But
perhaps the opponent of modal realism could explain this success after careful scrutiny.
Similarly, even though the degree approach invokes explicit quantification over degrees,
it does not yet follow that adopting it would commit us to the existence of degrees. What-
ever maneuver the opponent of modal realism makes to avoid ontological commitment to

16For instance, Priest [2005, p. 123] and Fitting [2013, p. 4] argue this.
17See Partee [1973, 1984], Cresswell [1990], Stone [1997], Kratzer [1998], King [2003], Schlenker [2006], and

Schaffer [2012] for a discussion.
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possible worlds, one could imagine making the analogous maneuver to avoid ontological
commitment to degrees.

§5.3 Problems with the Degree Approach
With all that said, the degree approach faces five problems (two technical, three con-
ceptual) that make finding a different solution to the problem of cross-world predication
worthwhile.

Problem 1: It doesn’t solve the problem of cross-world quantification. Consider (Rich)
again. The problem we faced when trying to express it in L1M was that the most natural
attempt to formalize it has the quantifier ranging over the domain of the wrong world. But
(one can show that) adding degrees doesn’t solve that problem. The defender of degrees
could respond by arguing that cross-world predication and cross-world quantification are
simply distinct phenomena that require distinct solutions. But there are combined solu-
tions to both problems. So if we can kill two birds with one stone, why waste stones?

Problem 2: It only works for cross-world comparisons. Every example of cross-world
predication we’ve encountered so far seems to be an instance of cross-world comparison.18
Thus, it’s tempting to think that somehow an approach to cross-world predication should
(like the degree approach) make essential use of comparative notions.

But for one thing, the claim that all natural instances of cross-world predication in En-
glish are instances of cross-world comparisons is a linguistic thesis. However plausible this
thesis is, it’s far from clear that logic should take a stand on it. Moreover, when we look at
other forms of modality, this thesis seems plainly false. For instance, an adequate solution
to the problem of cross-world predication should be able to analyze cross-time predication
as well. After all, each of our examples of cross-world predication have natural cross-time
counterparts, so all the problems that arise for the former arise for the latter. And yet,
cross-time predication doesn’t always involve a comparison. Consider for example:19

(Cherish) I will cherish the person I once was.

Semi-formally, this sentence says that, where t1 is the present, there’s a future time t2 ą t1
and a past time t0 ă t1 such that I in t2 cherish myself in t0. But it’s unclear how the degree
approach could possibly formalize (Cherish) by making use of degrees. It’s not as though

18Several authors have gone so far as to use the term “cross-world comparatives” as opposed to “cross-
world predication”, e.g., Lewis [1973, p. 436] and Cantwell [1995]. This is misleading, though, since many
cross-world predications don’t involve comparatives—e.g., “I could have sat between where Russ and Matt
are actually sitting” has no comparative in it. But still, such examples still seem to involve some kind of
comparison (in this case, comparing locations), and are still formalizable on the degree approach.

19Sider [2001, p. 26] has argued that sentences like “Some American philosopher admire some ancient Greek
philosopher” express cross-time predications of a similar sort that can’t be expressed in first-order temporal
logic. The force of this example, however, depends on how we set up first-order temporal logic. If we allow
“tenseless” quantifiers (Π and Σ), and if we allow extensions of predicates to contain non-existents, then the
sense can easily be formalized as Σx Σy (AmPhil(x) ^ PGreekPhil(x) ^ Admire(x , y)). (In defense of Sider,
he was in particular discussing presentism, which would most likely not allow for either of these in their
preferred temporal logic.) By contrast, (Cherish) is problematic even allowing for tenseless quantifiers and
non-existent objects in extensions of predicates.
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the object of my cherish is a “degree of youth”, for example; I can cherish the person I once
was without cherishing the person John once was at the same age.

Similarly, when discussing fiction, it seems natural to say:

(Admire) I admire Napoleon from War and Peace.20

Semi-formally, this says that I (in actuality) admire the Napoleon as in War and Peace. Note
that this sentence can’t just be seen as relating me to a non-existent object: I might admire
Napoleon from War and Peace without admiring the (now non-existent) Napoleon. Again,
it’s not clear what the degree approach could appeal to to formalize this sentence. So even
if the degree approach works for cross-world predication, it can’t extend beyond that.

Problem 3: It isn’t parsimonious. The degree approach isn’t a minimal solution, since it
now allows us to express new non-cross-world sentences like “There is an uninstantiated
height”:

Dh @x ¬Height(x; h). (24)

Now, no one is saying this is an inherently bad feature of the degree approach. For some
purposes, the ability to express sentences like this might be very important. But our focus
is on cross-world predication and quantification: we want to know what’s the minimal
extension of L1M we need to overcome these particular expressive limitations. And the
fact that the degree approach can express new non-cross-world sentences suggests that
we haven’t achieved this goal. So as far as minimality goes, it looks like we can do better.

Problem 4: The presence of degrees seems to be inessential. When I think about the
claim “x in w is happier than y is in v”, I could understand this as claiming that there’s
a quantity of hedons associated with x in w, and another quantity of hedons associated
with y in v, and those two quantities stand in some relation (the greater-than relation).
But this seems to be a rather roundabout way of claiming that x and w stand together in
some relation to y and v (the happier-than relation). Why should we need to factor our
reasoning through other objects first in order to understand the relation that x and w stand
in to y and v? Why not just reason about this relationship directly?21

Problem 5: We still have to worry about ontological commitment. Though we recog-
nized earlier that the debate over ontological commitment is far from settled, some may
still not be convinced that the degree approach isn’t ontologically committing. Wouldn’t it
be nice if we could just avoid the debate altogether? Given that such technical machinery
brings so much philosophical contention, it would be preferable to find a more conserva-
tive solution that is neutral between various philosophical theories.

20Based on a sentence from Button [2012, p. 246].
21A similar argument is made by Lewis [1986, p. 13].
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§6 The Function Approach
In giving semi-formal characterizations of the truth conditions of cross-world predications,
I’ve made use of locutions such as “Arc in w” and “the polar bear in v”. And (if I’ve done
my job properly), these semi-formalizations are accurate precisifications of these ordinary
English sentences. Thus, a natural solution to the problem of cross-world predication is to
mirror these locutions directly in the object language itself.

One way to implement this fuzzy idea is to add in function symbols whose interpreta-
tion sends objects “as they are in one world” to objects “as they are in another world”. A
common candidate in the literature is an “actually” function ◀.22 Thus, the denotation of
◀ τ will be the denotation of τ “as it actually is”. Thus, the source of cross-world predica-
tion is in the denotation of terms. Call this the function approach.

As we’ll see, the function approach avoids many of the worries raised by the degree
approach. However, as we’ll also see, the function approach is not general enough to solve
the problems of cross-world predication and cross-world quantification in full.

§6.1 Formalism
Let’s examine how the function approach is supposed to work.23 The signature for our
functional language LF is exactly the one for L1M in §3.1, with CON, VAR, and PREDn .
The difference now is that we also have a unary function symbol◀ such that if τ is a term,
so is ◀ τ. Thus, the set of terms in LF or LF-terms, TERMF, is defined recursively:

τ F x | c | ◀ τ.

The set of formulas in LF or LF-formulas, FORMF, is defined recursively as in §3.1:

φ F Pn (τ1 , . . . , τn) | τ1 « τ2 | E(τ1) | ¬φ | (φ ^ φ) | ◻φ | @φ | @x φ.

Again, LF
p is the result of adding Π to LF.

As for our models, we need to make one important change.24

Definition 6.1 (Cross-world Models). A cw-model is a tupleM = xW, R,D , δ, Iy where
W , R, D, and δ are as in Definition 3.1, and I is such that:
• for each c P CON, I(c , w) P D;
• for each Pn P PREDn , I(Pn ,w) Ď (D ˆ W )n .

22E.g., Milne [1992], Cantwell [1995], and Forbes [1994].
23The following formalization is, for the most part, based on Forbes [1994] and Wehmeier [2012]. Milne

[1992] and Cantwell [1995] both incorporate degrees into their solutions by having a unary degree function
symbol deg in the language. Then cross-world predications involve terms of the form◀ deg(τ). For instance,
(Tall) just becomes◇(deg(me) ąTaller ◀ deg(me)). The function approach as presented here, by contrast, does
not use degrees, as they’re not needed to solve the problem of cross-world predication; nor are they helpful
in avoiding the objections that follow.

24This definition is a slightly more general version of the definition in Wehmeier [2012, p. 109].
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The crucial difference is that the extension of predicates in cw-models are subsets of
(DˆW )n . The idea is that the ordered pair xArc,wy will represent “me as I am in w”. Thus,
when we say something like (Tall), what we’re saying is that, in some possible world v, me
as I am in v is taller than me as I actually am in w—that is, xArc, vy bears the taller-than
relation to xArc,wy.

For many cross-world predicates, the relativity of their extensions to a world is redun-
dant. For example, if xArc, vy is taller than xArc,wy in one world, then xArc, vy is taller
than xArc,wy in all worlds. For some cross-world predicates, however, this need not be
the case. Suppose you and I are discussing music in 1980, and I say “By today’s standards,
the Maria Callas of 1951 sounds better than the Maria Callas of 1954”. Later on, in 2014,
we’re discussing how much the musical tastes of society have changed, and I say “By to-
day’s standards, the Maria Callas of 1954 sounds better than the Maria Callas of 1951”.
Prima facie, the first sentence is true in 1980, but not in 2014. If that’s so, then “sounds
better than” will have a time-relative extension. Now, I don’t wish to settle whether this is
actually the best way to model such sentences. Still, for the sake of generality, we keep the
full relativity to worlds in what follows. If the extension of a predicate P is not relative to
worlds, we may write “I(P)” instead of “I(P,w)”.

Definition 6.2 (Function Denotation). Let τ be a term, letM be a cw-model, let w , v P

W , and let g P VA(M). The denotation of τ at xM ,w , v , gy, ⟦τ⟧M ,w ,v ,g , is defined
as follows (where (xa ,wy)obj B a):

⟦τ⟧M ,w ,v ,g
�

$

’

’

’

&

’

’

’

%

xI(τ, v), vy if τ P CON

xg(τ), vy if τ P VAR
A(
⟦σ⟧M ,w ,v ,g

)
obj
,w

E

if τ � ◀ σ.

One should not confuse ⟦◀ τ⟧M ,w ,v ,g with ⟦τ⟧M ,w ,w ,g . That is, the denotation of◀ τ is
not the actual denotation of τ. Rather, it is the denotation of τ-as-it-actually-is. For example,
suppose p is a constant for “the president”. Say in w the president is Obama, while in v
the president is Clinton. Then ⟦◀ p⟧M ,w ,v ,g

� xClinton,wy, but ⟦p⟧M ,w ,w ,g
� xObama,wy.

That is, in xM ,w , v , gy, ◀ p is v’s president, as she is in w; but in xM ,w ,w , gy, p is w’s
president, as he is in w.

Definition 6.3 (Function Satisfaction). The function satisfaction relation or the F-
satisfaction relation, ,F, is defined as in Definition 3.4 for cw-modelsM with the
following modified clauses:

M ,w , v , g ,F Pn (τ1 , . . . , τn) ô
@

⟦τ1⟧M ,w ,v ,g , . . . , ⟦τn⟧M ,w ,v ,gD

P I(P, v)

M ,w , v , g ,F τ « σ ô
(
⟦τ⟧M ,w ,v ,g

)
obj

�

(
⟦σ⟧M ,w ,v ,g

)
obj

M ,w , v , g ,F E(τ) ô
(
⟦τ⟧M ,w ,v ,g

)
obj

P δ(w).
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Notice τ1 « τ2 only requires that τ1 and τ2 denote the same object, not the same object-
world pair.25

§6.2 Expressive Limitations
To see how the formalism works, let’s check that

◇Taller(me,◀me) (25)

is an accurate way to formalize (Tall).

M ,w ,w , g ,F ◇Taller(me,◀me) ô Dv P Rrws : M , w , v , g ,F Taller(me,◀me)
ô Dv P Rrws : x⟦me⟧w ,v , ⟦◀me⟧w ,vy P I(Taller)
ô Dv P Rrws : x⟦me⟧w ,v , x(⟦me⟧w ,v)obj ,wyy P I(Taller)
ô Dv P Rrws : xxArc, vy , xArc,wyy P I(Taller)

which is exactly what we want. Thus, we’ll naturally be able to formalize (Tall) as (25).
Furthermore, as one can verify, we can formalize (Smart) as:

@x◇Smarter(x ,◀ x). (26)

Unfortunately, (Polar) will resist formalization still. Consider the natural formalization:

◇Dx (Polar(x) ^◻@ y (Grizzly(y) Ñ Bigger(◀ x , y))) . (27)

This formalization won’t do, since◀ x picks out the polar bear-in-actuality, not in the new
world we shifted to with◇. Thus, (27) doesn’t quite capture (Polar).

The problem is that the world considered as actual needs to be shiftable, so that ◀ x
above can shift in denotation with◇. One quick fix, then, would be to add a diagonaliza-
tion operator Ó with the following truth condition:26

M ,w , v , g ,F Óφ ô M , v , v , g ,F φ.

Thus, Ó “resets” the actual world to be the world of evaluation. By adding such an operator,
we can shift the denotation of ◀ τ by placing it inside the scope of a Ó that is itself inside
the scope of a modal operator. With this extra expressive power at hand, (Polar) would be
formalized correctly as:

◇ÓDx (Polar(x) ^◻@ y (Grizzly(y) Ñ Bigger(◀ x , y))) . (28)

But this only pushes the problem one step back. For if we reset the actual world, and then
later, inside the scope of more modals we need to refer back to the original actual world
before the reset, we’re hosed. Thus, consider the sentence:27

25For a justification of this choice, see footnote 40 in §8.
26This appears, e.g., in Lewis [1973, p. 437], although Lewis uses “:” instead of “Ó”.
27Here’s a similar example from Kratzer [2007] using different modalities: “Whenever it snowed, some

local person dreamed that it snowed more than it actually did, and that the local weather channel erroneously
reported that it had snowed less, but still more than it snowed in reality.”
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(Polar*) There is a polar bear that could be bigger than any grizzly bear could be if the
grizzly bear were fatter than the polar bear really is.

Semi-formally, this is true just in case there is a polar bear in the actual world w such that
in some possible world v, for every world u, and for every grizzly bear in u, if that grizzly
bear in u is fatter than the polar bear is in w, the polar bear in v is bigger than the grizzly
bear in u. Note that this can’t be captured just using diagonalization. For

Dx (Polar(x) ^◇Ó◻@ y ((Grizzly(y) ^ Fatter(y ,◀ x)) Ñ Bigger(◀ x , y))) (29)

fails to capture the intended meaning, since this says that the polar bear as it is in some
possibility is bigger than any grizzly bear that’s fatter than it is in that possibility. That
is, since both instances of ◀ x are in the scope of Ó, their denotations are the same, even
though we want the first ◀ x to refer to the polar bear as it really is, not as it is in this new
possibility.

§6.3 Additional Quantifiers
Another issue that the function approach faces is that it doesn’t solve the problem of cross-
world quantification. Since neither the degree approach nor the function approach have
been able to solve this problem by itself, however, we ought to consider some possible
solutions that could be added to these approaches. One possible fix would be to add a
quantifier @@ such that:

M ,w , v , g , @@x φ ô @a P δ(w) : M ,w , v , gx
a , φ.

Then we could express (Rich) as:

◇@@x (@Rich(x) Ñ Poor(x)) . (30)

But it’s not hard to see that this won’t help us express (Rich*). For instance,

◻◇@@x (@Rich(x) Ñ Poor(x)) (31)

doesn’t have the right truth conditions, as the @@ takes us back a world too far. Of course,
Ó could help us in this case:

◻Ó◇@@x (@Rich(x) Ñ Poor(x)) . (32)

But just as before, Ó by itself won’t be enough to handle more complicated cases where
we need to keep our original world considered as actual. For instance, the most natural
formalization of:

(Rich**) Necessarily, the rich could have all been millionaires if they were poor in reality.

is this:

◻Ó◇@@x
(
@Rich(x) ^ @Poor(x) Ñ Millionaire(x)

)
. (33)
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The problem is that we want the underlined @ to go all the way back to reality (i.e., the
original actual world). But since it’s under the scope of Ó, this is no longer possible. If
we had removed Ó, the @ without an underline would then go back to the starting world,
whereas we wanted @ to go to the world we shifted to by◻.

Another possible approach, taken by Bricker [1989], is to introduce second-order quan-
tifiers into the language. Doing so will allow us to talk rigidly about a group of objects at
different possible worlds. Thus, using X,Y, Z, . . . for second-order variables, (Rich) could
be formalized as:

DX (@x (Xx Ø Rich(x)) ^◇Πx (Xx Ñ Poor(x))) (34)

and (Rich*) just as the necessitation of (34):

◻DX (@x (Xx Ø Rich(x)) ^◇Πx (Xx Ñ Poor(x))) . (35)

In general, the second-order approach gets around the problem of cross-world quan-
tification. However, there are a few problems with this approach.

Problem 1: It requires possibilist quantification. If we had replaced Πx with @x in (34),
for instance, we would obtain an incorrect reading (because again, we want to quantify
over every person in the actual world, not every person in the world we shifted to). Perhaps
this just means we must abandon actualist quantification. But it would be nice if we could
find a solution that doesn’t force us to take a stand on this philosophically controversial
issue.

Problem 2: It is not parsimonious. Like the degree approach, the second-order approach
allows us to express new non-cross-world sentences like “Some critics only admire one an-
other”.28 And while it’s true that we may want to eventually obtain this expressive power,
in terms of seeking a minimal solution to our problems, second-order logic goes too far.

Problem 3: It treats the problems of cross-world predication and quantification as un-
related. By itself, the second-order approach does nothing to solve the problem of cross-
world predication, though it can effectively solve the problem of cross-world quantifica-
tion. If one combines the second-order approach with, say, the degree approach, it would
appear as though the problems are just completely separate problems with completely
separate solutions. But the approach presented in the next section can take care of both
problems at once. The second-order approach, in this respect, isn’t a terribly illuminating
solution to the problems we’ve started with.

§7 The Hybrid Solution
Despite its fallbacks, the function approach seems to come close to what we want. It just
needs to be generalized to overcome the limitations above.

28From Boolos [1984, p. 432].
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Consider the problem it faced with regards to (Polar*). The problem was that, mid-
sentence, we needed to remember what our starting world was so that we could refer back
to it; but, because of Ó, we had irretrievably reset that world and had no way of getting it
back. Similarly, consider the problem faced with regards to (Rich*). The problem was that,
after shifting twice, we needed a way to remember which world we shifted to the first time
so that we could go back and quantify over the domain of that world; but @ could only
take us to the world considered as actual, which was too far back.

In both cases, it seems like the function approach suffers from a memory problem. As
it stands, it doesn’t have a fully general method for remembering exactly which worlds we
started with or shifted to. If we just had a way for our semantics to remember these worlds,
these problems could be avoided.

But there’s already a well-studied logic that has this capability: it’s called hybrid logic.
In hybrid logic, one adds state variables like those in the two-sorted language, but instead
of adding state quantifiers, one relativizes @ and Ó to state variables. Informally, @s be-
haves like @, except it takes you back to whatever world s picks out (rather than the world
considered as actual); and Ós . behaves like Ó, except it sets s (rather than the world consid-
ered as actual) to be the current world of evaluation.

The intuition behind this proposal is to treat the newly added state variables as though
they were “memory slots”. Whenever we access a new world, we can, if we wish, save it
(using Ó) to an unused memory slot. Then later, we might retrieve the information stored
in one of these slots (using @) to help us obtain the right truth conditions. Thus, Ó could
be thought of as “saving” the current world of evaluation to some memory slot, while @
could be thought of as “loading” some previously saved world as the world of evaluation.

In this section, we explore this rather natural idea by expanding the function approach
to a quantified hybrid logic. As we’ll discuss below, doing so allows one to solve the prob-
lems of cross-world predication and cross-world quantification in a fully general yet parsi-
monious way. Furthermore, as we’ll also discuss, moving to quantified hybrid logic brings
with it a number benefits, including the solution to several other problems.

§7.1 Formalism

Now to be more precise. The signature for our languageLH will include CON, VAR, SVAR,
and PRED. The set of terms in LH or LH-terms, TERMH, is defined recursively:

τ F x | c | ◀sτ

where x P VAR, c P CON, and s P SVAR.
The set of formulas inLH ofLH-formulas, FORMH, is defined recursively as follows:29

φ F Pn (τ1 , . . . , τn) | τ1 « τ2 | E(τ1) | ¬φ | (φ ^ φ) | ◻φ | @sφ | Ós .φ | @x φ

where Pn P PREDn for each n ą 0, τ1 , . . . , τn P TERMH, s P SVAR, and x P VAR. Again,
LH

p will be the result of adding Π to LH. Any instance of s P SVAR in an LH-formula that
occurs in the scope of Ós . is said to be bound; any other occurrence of s is unbound. If every

29Unlike in ordinary hybrid logic, I haven’t allowed for state variables to count as well-formed formulas.
This is because such additional expressive power isn’t necessary here. See footnote 40 in §8.
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state variable is bounded in a LH-formula φ, then we’ll say φ is state-closed; otherwise,
it’s state-open. Finally, we’ll adopt these abbreviations throughout:30

• ◻sφ B ◻Ós .φ (“for all accessible worlds s, φ”)
• ◇sφ B ◇Ós .φ (“for some accessible world s, φ”)
• @s x φ B Ót .@s@x @tφ, where t occurs nowhere in φ (“for all x in world s, φ”)

Models on the hybrid solution are just the cw-models from before. As for the semantics:

Definition 7.1 (Variable Assignment). Let M be a cw-model. A H-variable assign-
ment forM is a function g such that: (i) for each x P VAR, g(x) P D; and (ii) for each
s P SVAR, g(s) P W . The set of all H-variable assignments forM will be VAH(M).

If a H-variable assignment g forM agrees with a H-variable assignment g1 for
M on every variable except possibly µ, then g and g1 are µ-variants, g „µ g1. The
H-variable assignment grµ ÞÑ αs or gµα is the µ-variant of g that sends µ to α.

Definition 7.2 (Hybrid Denotation). Let τ be a LH-term,M be a cw-model, w , v P W ,
and g P VAH(M). The denotation of τ at xM ,w , gy, ⟦τ⟧M ,w ,g , is defined as follows:

⟦τ⟧M ,w ,g
�

$

’

’

’

&

’

’

’

%

xI(c ,w),wy if τ � c where c P CON

xg(x),wy if τ � x where x P VAR
A(
⟦σ⟧M ,w ,g

)
obj
, g(s)

E

if τ � ◀s σ where s P SVAR.

Definition 7.3 (Hybrid Satisfaction). The hybrid satisfaction relation or H-satisfaction,
,H, is defined recursively for all cw-modelsM = xW, R,D , δ, Iy, all w P W , and all
g P VAH(M):

M ,w , g ,H Pn (τ1 , . . . , τn) ô
@

⟦τ1⟧M ,w ,g , . . . , ⟦τn⟧M ,w ,gD

P I(Pn ,w)

M ,w , g ,H τ1 « τ2 ô
(
⟦τ1⟧M ,w ,g

)
obj

�

(
⟦τ2⟧M ,w ,g

)
obj

M ,w , g ,H E(τ) ô
(
⟦τ⟧M ,w ,g

)
obj

P δ(w)

M ,w , g ,H ¬φ ô M ,w , g .H φ

M ,w , g ,H φ ^ ψ ô M ,w , g ,H φ andM ,w , g ,H ψ

M ,w , g ,H ◻φ ô @v P Rrws : M , v , g ,H φ

M ,w , g ,H @sφ ô M , g(s), g ,H φ

M ,w , g ,H Ós .φ ô M ,w , gs
w ,H φ

M ,w , g ,H @x φ ô @a P δ(w) : M ,w , gx
a ,H φ

M ,w , g ,H Πx φ ô @a P D : M ,w , gx
a ,H φ.

30While these abbreviations may make the hybrid solution look much like the two-sorted language, there
are subtle but important differences between the two approaches. This will be discussed in §8.
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One might wonder why we dropped the unsubscripted ◀ and @ from the language
and adopted a plain vanilla one-dimensionsal semantics. One reason is that it will sim-
plify some of the discussion that follows. Another reason is that the extra symbols and
dimension are redundant in the sense that there is no real increase in expressive power,
at least over diagonal indicies. For if we had adopted a two-dimensional semantics for
LH, then for all φ, where s P SVAR does not occur anywhere in φ, M ,w ,w , g , φ iff
M ,w ,w , g , Ós .φ˚, where φ˚ is the result of replacing every ◀ and @ respectively with
◀s and @s . So we can adopt a convention that, say, g(s0) always denotes the world con-
sidered as actual, and that we never bind s0 when formalizing sentences. Then we can
just define ◀ τ and @φ respectively as ◀s0 τ and @s0φ. No generality is lost, but much is
gained in simplicity.

Simpler quantified hybrid logics without◀ have been previously studied by e.g., Black-
burn and Marx [2002] and Areces et al. [2003], though not explicitly in the context of these
problems. The version of quantified hybrid logic presented here is similar in spirit to the
proposals of Forbes [1989], Cresswell [1990], and Wehmeier [2012], though it is rarely
acknowledged that these other proposals are essentially hybrid logics.31 The first two
aren’t designed to handle cross-world predication (only cross-world quantification) and
are equivalent to the ◀-free fragment of LH. The third is designed to handle cross-world
predication and resembles the hybrid solution in a number of respects. One can think of
the hybrid solution as a generalization of Wehmeier’s framework (e.g., to allow for a non-
universal accessibility relation, different arities of cross-world predicates, etc.). See §B for
an elaboration of this point.

§7.2 The Solution
At last, we can see how quantified hybrid logic solves the problems of cross-world predica-
tion, cross-world quantification, and the other related problems we saw in §1. I assume for
concreteness that all object quantifiers are actualist, though it doesn’t really matter which
quantifier one prefers to use (another benefit of the hybrid solution!).

Cross-world Predication & Quantification. Here again are some of the key examples of
cross-world predication and quantification that have appeared throughout the paper:

(Tall) I could have been taller than I actually am.

Ós .◇Taller(me,◀sme) (36)

(Smart) Everyone could have been smarter than they actually are.

Ós .@x◇Smarter(x ,◀s x) (37)

(Polar) A polar bear could be bigger than a grizzly bear could be.

◇sDx (Polar(x) ^◻@ y (Grizzly(y) Ñ Bigger(◀s x , y))) (38)
31After completing this paper, it came to my attention that Yanovich [2015] has explicitly used quantified

hybrid logic, in its familiar form, for addressing the problem of cross-world quantification. The problem of
cross-world predication is not addressed in his paper however.
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(Polar*) There is a polar bear that could be bigger than any grizzly bear could be if the
grizzly bear were fatter than the polar bear really is.

Ós .Dx (Polar(x) ^◇t◻@ y ((Grizzly(y) ^ Fatter(y ,◀s x)) Ñ Bigger(◀t x , y))) (39)

(Rich) The rich could have all been poor.

Ós .◇@s x (@sRich(x) Ñ Poor(x)) (40)

(Rich*) Necessarily, the rich could have all been poor.

◻s◇@s x (@sRich(x) Ñ Poor(x)) (41)

(Rich**) Necessarily, the rich could have all been millionaires if they were all poor in real-
ity.

Ót .◻s◇@s x ((@sRich(x) ^ @tPoor(x)) Ñ Millionaire(x)) (42)

To illustrate how the formal system works, let’s check that (Rich*) gets the right results.
I leave it to the reader to check the other examples.

M ,w , g ,H ◻s◇@s x (@sRich(x) Ñ Poor(x))
ô @v P Rrws : M , v , gs

v ,H ◇@s x (@sRich(x) Ñ Poor(x))
ô @v P Rrws Du P Rrvs : M , u , gs

v ,H @s x (@sRich(x) Ñ Poor(x))
ô @v P Rrws Du P Rrvs @a P δ(gs

v (s)) : M , u , gs ,x
v ,a ,H @sRich(x) Ñ Poor(x)

ô @v P Rrws Du P Rrvs @a P δ(v) : M , v , gs ,x
v ,a ,H Rich(x) ñM , u , gs ,x

v ,a ,H Poor(x)
ô @v P Rrws Du P Rrvs @a P δ(v) : xgs ,x

v ,a (x), vy P I(Rich, v) ñ xg(x), uy P I(Poor, u)
ô @v P Rrws Du P Rrvs @a P δ(v) : xa , vy P I(Rich, v) ñ xa , uy P I(Poor, u). ✓

In addition to being able to solve the problems of cross-world predication and quan-
tification, the hybrid solution can explain how the two are related. What they share in
common is their essential use of cross-world recollection, which involves the ability to
remember worlds that have previously been encountered in the semantic evaluation pro-
cess.

Take (Rich) for instance. Intuitively, what’s going on in (Rich) is that, once we’ve al-
ready shifted to another world, we want to jump back to our starting world to quantify
over its domain, and then “jump forward” to the same shifted world as before. While stan-
dard modal logic can’t reliably jump back and forward like this,32 hybrid logic can do this
quite easily because it can remember which worlds we’ve encountered. Similarly, what’s
going on in (Polar) is that we need the denotation of a term to “reach outside” the scope of
a modal to refer to a world we previously accessed. Both examples seem to crucially rely
on the power of cross-world recollection obtained in LH.

32Such limitations are discussed in Hazen [1976, p. 39].
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Cross-time Predication. The hybrid solution to cross-world predication naturally extends
to a solution to cross-time predication in a number of respects. For one thing, since we
don’t have to deal with degrees, non-comparative sentences like (Cherish) can be easily
formalized:33

(Cherish) I will cherish the person I once was.

Ós .PÓt .@sF Cherish(me,◀tme). (43)

Moreover, one might naturally wonder how to formalize sentences like:

(Fat) Toby was fatter in 1980 than William in 1982.34

As it stands, LH can’t formalize this; but it could easily be modified by adding state con-
stants (or nominals as they’re called in hybrid logic) whose denotation is fixed by the
model, rather than a variable assignment. In that case, LH could formalize (Fat) as:

Fatter(◀1980toby,◀1982will). (44)

Thus, quantified hybrid logic is well-equipped to generalize as an account of cross-time
predications.

Cross-fictional Predication. Consider again (Bilbo):

(Bilbo) Bilbo in The Lord of the Rings is taller than Thumbelina in Thumbelina.

While the degree approach could formalize (Bilbo) with degrees, it can also be formalized
fairly easily without degrees in LH:

Ós . rLotRsr @s rThumbst @sTaller(◀rbilbo,◀tthumb). (45)

And unsurprisingly, the hybrid solution can account for a number of other mixed-world
sentences like:

(Bilbo*) I am taller than Bilbo in The Lord of the Rings.

Ós . rLotRs Ót .@sTaller(me,◀tbilbo). (46)

Now, the hybrid solution won’t by itself stand as a complete account of fictional dis-
course. For one thing, there’s the possibility of impossible fictions, which has yet to be
discussed. But there’s a more fundamental problem. Consider one problematic sentence
for LH:

(Fame) Sherlock Holmes from the Holmes stories is more famous than any actual detec-
tive.

33Where F is the “it will be the case that” operator, and P is the “it was the case that” operator.
34From Butterfield and Stirling [1987].

27



§7 The Hybrid Solution Alex Kocurek

Suppose we have a predicate Famous for “is more famous than”. Can (Fame) be expressed
in LH? The best attempt seems to be the following:

Ós .@x (Detective(x) Ñ rHolmess Ót .@sFamous(◀tsherlock, x)) . (47)

The problem with this formalization, however, is that it claims that every precisification of
the Holmes stories yields a Sherlock more famous than any actual detective. That is, (47)
claims that every version of Sherlock Holmes compatible with the Holmes stories is more
famous than any actual detective. But this seems much stronger than (Fame)—the claim
that a version of Holmes that has a freckle on his back is more famous than any actual
detective is quite odd, if not dubious.

However, there is a natural fix. Suppose we replace fictional worlds in our models
with fictional possibilities—that is, possible states which do not determinately decide on
every sentence whether that sentence is true or false.35 In doing so, we could reinterpret
rHolmess so that this operator (instead of checking every fictional world compatible with
the Holmes stories) simply shifts the world of evaluation to the fictional possibility of the
Holmes stories. In making this move, (47) doesn’t have the problem stated above—only
one Sherlock Holmes is picked out by the use of ◀t sherlock above. Developing this idea
in detail is quite tricky, however, and will have to wait for another time.

Counteridenticals. Recall the problematic counteridenticals:

(Horse) If I were you, I wouldn’t bet on that horse.

(Bold) I would be bolder if I weren’t me.

(Horse*) If you were me, I wouldn’t bet on that horse.

(Sally) If I were you and you were Sally, I would be Sally.

(Star) If I were you and you were me, I would be a rock star and you wouldn’t.

On the degree approach, one could formalize these by postulating the existence of “shoes”
(or rather, positions). But in quantified hybrid logic, we can get away with just the Shoes
predicate (from §1) in the following manner:

Ós .(Shoes(me,◀s you) � ¬Bet(me, horse)) (48)
Ós .(¬ Shoes(me,◀s me) � Bolder(me,◀s me)) (49)

Ós .(Shoes(you,◀s me) � ¬Bet(me, horse)) (50)
Ós .((Shoes(me,◀s you) ^ Shoes(you,◀ sally)) � Shoes(me,◀s sally)) (51)

Ós .((Shoes(me,◀s you) ^ Shoes(you,◀s me)) � (RockStar(me) ^ ¬RockStar(you))). (52)

Notice that all the problems that arose for the naïve view of counteridenticals, which inter-
preted the antecedents as literally involving identity statements, don’t arise for the hybrid
solution. Just as (Bold) isn’t trivial, (49) isn’t trivial; just as (Horse*) isn’t equivalent to

35Such possibilities could be situations as in Kratzer [2007], though they need not be cashed out in that
particular way.
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(Horse), (50) isn’t equivalent to (48); just as (Sally) isn’t necessarily true, (51) isn’t necessar-
ily true; and just as (Star) is possibly true, (52) is possibly true.

A similar analysis could be given for beliefs about identity. Consider an example:

(KR) Biron thinks that Katherine is Rosaline.36

If names are rigid, this clearly can’t mean that Biron believes the negation of an identity
statement that Katherine is identical to Rosaline, since that identity statement is true in
all worlds. (One can also illustrate it’s not an identity statement by showing that all the
standard properties of identity fail, as with counteridenticals.) Thus, we need another way
to formalize (KR).

The solution can be given in terms of “roles”. The idea is that in all of Biron’s belief
worlds, Katherine is playing a certain role in Biron’s cognitive life, e.g., being the person
identified as Rosaline. Thus, if we had a predicate like Role(a , x , y), which means “x plays
the same role as y for agent a”, then we can formalize sentences like (KR) as:37

Ós .BbironRole(biron, kat,◀srosa). (53)

Again, the details will have to come at another time.38

Supervenience. Finally, recall the statement of supervenience:

(Super) The mental supervenes on the physical—there can’t be any difference in the men-
tal without a difference in the physical.

This can be formalized as follows:

Ór.◻s@x @r◻t@ y @r (◀s x „P ◀t y Ñ ◀s x „M ◀t y) . (54)

Notice that such formalization requires the hybrid solution, not just the function approach.
At last, all the data is accounted for.

§8 Distinguishing LH from L2S

To sum up the paper so far, we started with the following problem: is there an extension
of L1M that can express every instance of cross-world predication and quantification? Of
course, the two-sorted language L2S could, but we wanted to know whether something
more minimal would suffice. We saw that neither adding degrees to the model nor adding
a function symbol◀ sufficed to express cross-world predication and quantification in full
generality. Finally, we found that moving to quantified hybrid logic provides an elegant
and parsimonious solution to the problems.

36From Cumming [2008, p. 529].
37Here, the use of◀s as opposed to◀might be necessary, since there are powerful arguments that doxastic

and epsitemic modal operators shift the actual world, e.g., Rabinowicz and Segerberg [1994].
38This approach is similar to the ones taken by, e.g., Aloni [2005]; Holliday and Perry [2014]. These authors

could be seen as the kind of approach sketched above, except with explicit quantification over “roles”, akin to
the degree approach.
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I would like to conclude by addressing the following concern: how minimal is quan-
tified hybrid logic? Sure, as we’ve seen above, quantified hybrid logic seems to solve all
the problems we’ve discussed so far in a natural, well-motivated manner. The two-sorted
language can also solve these problems, though in §4.3, I claimed that we ought not accept
the two-sorted language as the easy solution. But some readers might feel cheated: isn’t
the hybrid solution just the two-sorted language in disguise?

No. Just like with L1M, we can translate every LH-formula into a L2S-formula, but not
vice versa. Still, it’s easy to see why one would be tempted to say they’re notational variants,
at least on a conceptual level. For one thing, the presence of state variables in the object
language seems to be suspicious, and ◻Ósk . bears a close resemblance to @sk . Moreover,
the actual difference between LH and L2S is quite subtle, and the gap between the two
languages can be collapsed rather easily. But that doesn’t mean these differences aren’t
important.

§8.1 Differences

There are three main differences between L2S and the fragment of L2S that LH character-
izes (henceforth, I’ll simply identify the fragment of L2S that LH characterizes with LH

itself). First, LH requires that all state quantifiers be R-bounded. That is, all universal state
quantifiers in a LH-formula must take the form @t (R(s , t) Ñ ¨ ¨ ¨), and all existential state
quantifiers must take the form Dt (R(s , t) ^ ¨ ¨ ¨) (where s , t). Second, if we use actual-
ist quantifiers, LH requires that all object quantifiers be E-bounded—that is, of the form
@x (E(x; s) Ñ ¨ ¨ ¨) and Dx (E(x; s) ^ ¨ ¨ ¨). And third, LH does not allow one to build up
formulas from any atomic formula. In particular, it bans building up complex formulas
from atomic formulas of the form R(s , t) and s « t.39

Putting these restrictions together, we can succicintly state the difference between the
two languages: LH can only be built from certain kinds of atomic formulas—not includ-
ing those of the form R(s , t) and s « t—using negation, conjunction, (E-bounded) object
quantifiers, and R-bounded state quantifiers. Put another way: if we assume R is univer-
sal, allow ourselves to build from any atomic formula, and use possibilist quantifiers, we
get back the full two-sorted language. Thus, it’s no surprise that one would suspect the
difference between LH and L2S to be quite small.40

But the difference is still important. For one thing, even if we grant that R should be
universal for metaphysical modality, it’s not clear it should be universal for other kinds
of modalities. An obvious example is temporal modalities, which are crucially restricted
by the earlier-than relation. But for a less obvious example, it seems very plausible that
fiction modal operators are not S5 operators. For instance, RLotR is certainly not reflexive

39It also bans other kinds of atomics if constants are non-rigid designators, and if there are no possibilist
quantifiers. For instance, LH can’t be built from atomics of the form P(c(s); t , t1) where s , t. It is possible to
state precisely which atomic formulas are allowed, but it won’t be necessary to go into the details here.

40The difference is even smaller if we either allow state variables as formulas, as is oridinarily done in hybrid
logic, or if we define an identity relation ” such thatM , w , g , τ ” σ iff ⟦τ⟧M ,w ,g

� ⟦σ⟧M ,w ,g . If either
of these are added to the syntax, then we can express R(s , t) either as @s◇t or @s◇(c ” ◀t c). We can also
express s « t either as @s t or @s (c ” ◀t c). This is one reason why we use « and why we don’t allow
state variables to also be formulas, apart from the fact that we don’t need the extra expressive power of the
expanded language to express the sentences we’re interested in.
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or symmetric, as this world is not a world compatible with The Lord of the Rings.41 Thus,
for fictional discourse, the R-boundedness will be an important restriction on the formulas
one can construct.42

The fact that we can’t build complex formulas from R(s , t) and s « t arbitrarily in LH

is perhaps even more crucial. This allows us to preserve a general feature of most modal
logics: duplicating worlds preserves modal truth. That is, in most modal logics, no modal
formula can distinguish between a model with two worlds that are exact duplicates of one
another (having the same extensions, the same local domains, seeing the same worlds, etc.)
and a model with just one of the duplicates. By contrast, a L2S-formula can do this.

Here’s a very simple example. Consider the following L2S-formula:

Ds R(s , s). (55)

ThisL2S-formula isn’t techincally R-bounded, since the second state variable isn’t different
from the first. And in fact, we can prove this isn’t equivalent to a LH-formula by consider-
ing two different models (where we assume w and v have the same local domains, same
extensions for predicates, and same denotations for constants):

w w v

M1 M2

L2S can distinguish xM1 , wy from xM2 ,wy by (55). However, both satisfy the exact
same LH-formulas. Thus, no LH-formula distinguishes these two. And intuitively, there
shouldn’t be one: there isn’t a substantial difference between these two situations.

We can also distinguish xM1 ,wy and xM2 ,wy with the L2S-formula:

Dt (R(s , t) ^ s 0 t) . (56)

Unlike (55), (56) is R-bounded. But it also contains s 0 t, so it isn’t a LH-formula. And
again, since xM1 ,wy and xM2 , wy satisfy the same LH-formulas, (56) isn’t equivalent to a
LH-formula. Many more interesting examples can be generated, but one sees the general
point: L2S makes distinctions where LH doesn’t. And if one has principled reasons for
thinking such distinctions shouldn’t be made, then one has reason to refrain from adopting
L2S over LH.

41Whether it’s transitive depends on how one understands fictional discourse. If RLotR is understood linking
worlds compatible with The Lord of the Rings as written in this world, then it’s probably transitive. If RLotR is
understood as linking worlds compatible with The Lord of the Rings as written in the world of evaluation, then
it’s not, as some fictional worlds compatible with The Lord of the Rings won’t even contain such a fiction.

The former theory seems more plausible, since it seems possible that Bilbo never existed in The Lord of the
Rings (if Tolkien had decided to write the story differently, for example). But if that’s so, then two differ-
ent worlds of evaluation might disagree on which worlds are compatible with The Lord of the Rings. Hence,
RLotR would have to be interpreted as compatability with The Lord of the Rings as it’s written in the world of
evaluation, not this world. But I won’t settle the matter here due to space constraints.

42However, if we add any global modality, then we again lose R-boundedness. Thanks to Balder ten Cate
for pointing this out.
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§8.2 Minimality
I’ve argued above that there are good reasons to not go beyond the expressive power of
LH. But can we be more minimal thanLH? That is, is there a language extendingL1M that
can express cross-world predication and quantification without extending LH? If there is,
this could motivate moving away from LH to a more minimal language.

This question seems difficult to address, but I wish to conclude by providing a tentative
answer. The problem in addressing this question is that we haven’t precisely defined what
it takes for a formula to express a genuine example of cross-world predication or quan-
tification. We’ve argued above that LH at the very least has enough expressive power to
capture every instance of cross-world predication and quantification, just likeL2S. But just
like L2S, it might also add some expressive power that’s not essential to solving the prob-
lems of cross-world predication and quantification. And until we know precisely which
formulas are cross-world and which aren’t, we won’t have a principled way of deciding
the matter.

To fill this gap, I will conjecture that the intuitive properties of expressing genuine
cross-world predication or quantification are captured by the following definition:

Definition 8.1 (Cross-world). AnLH-formula is a cross-world formula if every equiv-
alent LH-formula either contains an instance of ◀ or contains an object quantifier
scoping over an instance of @. An LH-formula is a non-cross-world formula if it’s
not a cross-world formula. We’ll also say anL2S-formula is cross-world if it’s equiv-
alent to the translation of a cross-world LH-formula.

Such a conjecture is akin to the Church-Turing thesis that the correct precisification of
computability is Turing computability. To refute the conjecture, one would need to provide
an intuitive example of a (non-)cross-world predication or quantification that doesn’t fit
this definition. And such examples are not forthcoming (indeed, all of (36)–(42) are cross-
world in the sense of Definition 8.1).43

But such a definition does make intuitive sense upon reflection. All cross-world pred-
ications seem to rely on “as in” locutions, which are directly captured by ◀. As for cross-
world quantification, the key feature of cross-world quantification is the ability of a quan-
tifier to “reach outside” the scope of a modal it’s embedded in, and then “jump back in”.
To escape the scope of a modal, one only needs to use a modal operator to shift the world
of evaluation; but to jump back inside the scope of a modal, one needs to make use of @.
So the presence of a quantifier scoping over @ evinces cross-world quantification.

Given that Definition 8.1 embodies the correct precisification of cross-world predica-
tion and quantification, we can now state the question above more precisely. Let L1M´

43Of course, this needs to be qualified. Here’s a potential counterexample: “The authors of Principia could
have written more clearly than they actually did”. This sentence cannot be expressed inLH, yet clearly is cross-
world. But the reason this sentence is not expressible is not because of the cross-world part of the sentence,
but because it involves plurals; and this is a problem even for the two-sorted language, our most expressive
language thus far. So really, what should be said is this: to refute the thesis, one would need to find a sentence
that can be formalized into the two-sorted language that isn’t expressible in LH but still appears to be a cross-
world sentence.
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be the @-free fragment of L1M (that is, standard first-order modal logic without an actual-
ity operator). According to Definition 8.1, L1M´ only contains non-cross-world formulas.
Furthermore, according to Definition 8.1,LH contains all of the cross-world formulas. But
is there a language that extends L1M´ but doesn’t extend LH that captures all the cross-
world formulas in LH?

Theorem 8.2 (The Non-Cross-World Fragment of LH is Essentially L1M´). Every state-
closed non-cross-world LH-formula is equivalent to an L1M´-formula. More gen-
erally, every non-cross-world formula of the form φ(x1 , . . . , xn ; t1 , . . . , tm) is equiv-
alent to a boolean combination of LH-formulas that are either of the form @tiψ or
of the form θ, where ψ and θ are L1M´-formulas.

In other words, the only non-cross-world state-closed formulas in LH were already in
L1M´: the only state-closed formulas LH adds are cross-world. The proof is in §C. Com-
bined with Definition 8.1, which says LH adds all state-closed cross-world formulas, it
follows that LH is exactly the minimal extension of L1M´ that captures all cross-world
formulas. LH does add some new state-open non-cross-world formulas (that’s why the
theorem doesn’t just say that the non-cross-world fragment of LH is L1M´ full stop). But
as far as minimality is concerned, this shouldn’t be troubling for two reasons.

First, over diagonal indices—which, in the hybrid setting, means indices of the form
xM ,w , gy where g(s) � w for all s P SVAR—the restriction to state-closedLH-formulas can
be dropped. That is, every non-cross-world formulas is equivalent over diagonal indices
to an L1M´-formula. This is just because if φ is an L1M´-formula, then @tiφ is equivalent
over diagonal indices to φ.

Second, even over non-diagonal indices, LH doesn’t introduce a wholly new kind of
non-cross-world formulas as previous approaches did. After all, just consider the case
where our non-cross-world formula φ only contains our special state variable s0 that by
convention picks out the world considered as actual. Thenφwill be equivalent to a boolean
combination of non-cross-world formulas in L1M (with @). In general, the new kind of
non-cross-world formulas that LH introduces simply assert that old kinds of non-cross-
world formulas hold elsewhere. By contrast, the new non-cross-world formulas in the
degree approach or the two-sorted language will be of a wholly different sort not found in
anything like L1M.

So modulo state-closure, one will not find a language that extends L1M´ and can ex-
press all cross-world formulas, but doesn’t extend LH. Hence, it’s reasonable to conclude
that LH does get at the heart of cross-world phenomena.

§A Two-Sorted Logic
In this section, we review the standard semantics for two-sorted first-order logic. We then
state precisely in what sense the translation from Definition 4.1 from L1M to L2S is in fact
accurate.

Throughout, we adopt the following convention:
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Notation: If α1 , . . . , αn is any sequence (of variables, terms, objects, etc.), we may
write “α” in place of “α1 , . . . , αn”. α is assumed to be of the appropriate length in
any given context. When f is some unary function, we may write “ f (α)” in place
of “ f (α1), . . . , f (αn)”. (Context will always distinguish between f (α1), . . . , f (αn)
and f (α1 , . . . , αn).) Where α is a sequence, we’ll let |α| be the length of α.

§A.1 Models
First, we review standard two-sorted first-order models.

Definition A.1 (Two-Sorted Models). A L2S-model or two-sorted model is an or-
dered tuple M2S = xW,D ,Vy where W and D are sets, and V is a function (the
valuation function) such that:
• for each c P CON, V (c) : W Ñ D;
• for each Pn{m P PREDn{m , V (Pn{m) Ď Dn ˆ W m ;
• V (E) Ď D ˆ W ;
• V (R) Ď W ˆ W .

Usually, we are interested in L2S-models which correspond to some L1M-model.

Definition A.2 (Model Correspondents). Let M = xW, R,D , δ, Iy be an L1M-model.
An L2S-correspondent ofM is a L2S-modelM2S = xW,D ,Vy such that:
• for all c P CON, V (c)(w) = I(c ,w);
• for all Pn P PREDn{1, V (Pn) � txa1 , . . . , an ; wy | xa1 , . . . , any P I(Pn ,w) u;
• V (E) � txa; wy P D ˆ W | a P δ(w) u;
• V (R) � R.

An L2S-correspondent is just an L2S-correspondent of some L1M-model.

Notice in particular that Definition A.2 doesn’t pick out a unique L2S-correspondent
for any given L1M-model. This will be important below.

§A.2 Semantics
Next, we review the standard semantics for two-sorted first-order logic.

Definition A.3 (Two-Sorted Variable Assignment). LetM2S be an L2S-model. A vari-
able assignment forM2S is a function assigning members of D to object variables,
and members of W to state variables. The other definitions are as they are in Def-
inition 3.2. For any L2S-correspondentM2S ofM, and any g onM, we’ll say that

34



§A Two-Sorted Logic Alex Kocurek

g2S forM2S is a L2S-correspondent for g if g(x) � g2S(x) for all x P VAR.

Definition A.4 (Two-Sorted Denotation). Let τ P TERM2S, letM2S be an L2S-model,
and let g2S P VA(M2S). The denotation of τ at xM2S , g2Sy, ⟦τ⟧M2S ,g2S , is defined
as follows:

⟦τ⟧M
2S ,g2S

�

#

V (c)(g2S(s)) if τ � c(s) where c P CON and s P SVAR

g2S(x) if τ � x where x P VAR.

Definition A.5 (Two-Sorted Satisfaction). The two-sorted satisfaction relation, (, is
defined recursively, for all L2S-models M2S = xW,D ,Vy and all variable assign-
ments g2S P VA(M2S):

M2S , g2S ( Pn{m (τ; s) ô

A

⟦ τ ⟧M
2S ,g2S

; g2S(s)
E

P V (Pn{m)

M2S , g2S ( τ1 « τ2 ô ⟦τ1⟧M
2S ,g2S

� ⟦τ2⟧M
2S ,g2S

M2S , g2S ( s1 « s2 ô g2S(s1) � g2S(s2)

M2S , g2S ( E(τ; s) ô
@

⟦τ⟧M
2S ,g2S ; g2S(s)

D

P V (E)

M2S , g2S ( R(s1 , s2) ô xg2S(s1), g2S(s2)y P V (R)

M2S , g2S ( ¬φ ô M2S , g2S * φ

M2S , g2S ( φ ^ ψ ô M2S , g2S ( φ andM , g ( ψ

M2S , g2S ( @x φ ô @a P D : M2S , (g2S)x
a ( φ

M2S , g2S ( @s φ ô @w P W : M2S , (g2S)s
w ( φ.

§A.3 Expressivity

Recall the translations fromL1M intoL2S from Definition 4.1. Given the definitions above,
the following is easy to prove by induction on the complexity of L1M-terms and L1M-
formulas.

Lemma A.6 (Adequacy of Translation). LetM be anL1M-model,M2S anL2S-correspondent
forM, w , v P W , g P VA(M), g2S an L2S-correspondent variable assignment of g
forM2S, s , t P SVAR, τ an L1M-term, and φ an L1M

Π
-formula.

(a) ⟦τ⟧M ,w ,v ,g
�
⟦
sts ,t (τ)

⟧M2S ,(g2S)s ,t
w ,v

(b) M ,w , v , g , φ iffM2S , (g2S)s ,t
w ,v ( STs ,t (φ).
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One can now prove more rigorously that cross-world predication is in general not ex-
pressible inL1M. First, let’s say what it means for aL1M-formula to be expressible inL2S:44

Definition A.7 (Expressivity). AnL1M-formulaφ(x) expresses anL2S-formulaφ2S(x; s , t)
if φ2S is equivalent (in L2S) to STs ,t (φ). Similarly for L1M

Π
-formulas.

Now, recall that in Definition A.2, no constraints are placed on howL2S-correspondents
are to interpret n{m-predicates where m ą 1. Thus, the extensions of the relevant 2{2-place
predicates occurring in (16)–(18) could be anything—nothing about the L1M-model will
tell us what they must be in itsL2S-correspondents. Such arbitrariness makes it fairly easy
to create twoL2S-correspondents of anL1M-model which disagree on one of (16)–(18). But
then it follows by Lemma A.6 that none of (16)–(18) can be equivalent to the (possibilist or
actualist) translation of a L1M-formula. Thus:

Corollary A.8 (Inexpressibility of Cross-World Predication). There is no L1M
Π

-formula
that expresses any of (16)–(18).

The proof that cross-world quantification—in particular, (19)–(20)—are inexpressible
requires more work. The more complicated proof is in Kocurek [2015].

§B Wehmeier’s Subjunctive Logic
In this section, we’ll briefly examine the framework of Wehmeier [2012], which was also
designed to solve the problems of cross-world predication and quantification, and explain
how it relates to LH.45

The key idea behind Wehmeier’s proposal is idea of mood. Essentially, Wehmeier sug-
gests that what needs to be added toL1M to overcome these expressivity issues is not some
new operators, but rather some way of distinguishing indiciative and subjunctive moods
in the syntax. Wehmeier does this by introducing “mood markers” i , s , s1 , s2 , s3 , . . . (i for
“indicative”, s for “subjunctive”), which are basically state variables. Predicates will then
be decorated with mood markers to indicate the worlds relevant for their evaluation, i.e.,
the world relative to which we calculate the extension of that predicate.

Formally, Wehmeier’s language LWeh is built as follows:

τ F c | x

φ F Pn{t (τ1 , . . . , τn) | Cn{t1 ,...,tn (τ1 , . . . , τn) | τ « σ | ¬φ | (φ ^ φ) | ◻t
kφ | @t x φ

where k ě 1, and t , t1 , . . . , tn are mood markers. In LWeh, we distinguish two kinds of
predicates: “ordinary” predicates Pn that are only decorated with one mood marker, and
“cross-world” predicates Cn that are decorated with n-mood markers. While LH does not
make this distinction, it could in principle by introducing a class of “ordinary” predicates

44This is not the most general definition of expressivity, but for our purposes, we only need this particular
instance of the more general definition.

45I again allow myself the flexibility of re-writing Wehmeier’s notation, for the sake of continuity.
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are essentially insensitive to ◀-terms. We will keep this distinction to help ease the com-
parison betweeh LH and LWeh.

The quantifiers are decorated with mood markers to determine the domain of quan-
tification: @sn x φ says that every x that exists in wn satisfies φ. Modal operators are both
decorated by mood markers and subscriped with numbered indicies. The mood marker
indicates world relative to which accessibility is determined, while the subscript indicates
where we save the shifted world for reference: ◻sn

k φ says that at every world v accessible
to wn , φ is true assuming we save v as the kth reference world.

With regards to models and semantics, Wehmeier essentially uses cw-models with a
number of constraints. For one thing, he assumes that constants are rigid designators (so
I(c ,w) � I(c , v) for all w , v P W) and that the extension of cross-world predicates are
rigid in a similar sense (so I(C,w) � I(C, v) for all w , v P W). We will follow Wehmeier
and assume these constraints for ease of comparison to LH, noting that they are not essen-
tial to any of the results that follow and may be dropped if so desired. In what follows,
we’ll simply write “I(c)” and “I(C)” for brevity. He also assumes that R is universal (in
which case, he can drop the mood marker decorating ◻) and that only binary predicates
(in particular comparatives) are cross-world. However, we will not impose these additional
constraints, again for ease of comparison to LH.46

The last major difference in Wehmeier’s models is that he defines the extension of or-
dinary predicates to be an ordered n-tuple of objects, not object-world pairs. In terms of
cw-models, this means that the extension of predicates is insensitive to the world coordi-
nates of object-world pairs. Thus, we can for our purposes define the class of models for
Wehmeier as follows:

Definition B.1 (weh-Models). A cw-modelM is a weh-model if it meets the following
two constraints:
(i) for all c P CON and all w , v P W , I(c ,w) � I(c , v);

(ii) for all ordinary predicates P, all w , v1 , . . . , vn P W , and all a1 , . . . , an P D,
xxa1 , v1y , . . . , xan , vnyy P I(P,w) iff xxa1 ,wy , . . . , xan ,wyy P I(P,w);

(iii) for all cross-world predicates C and all w , v P W , I(C,w) � I(C, v).

The semantics relativizes satisfaction to indices of the form xM ,w , v , gy, whereM is
a weh-model, and where w � w0 , w1 ,w2 , . . .. The denotation of terms only needs to be
relativized to a model and variable assignment, since the constants rigidly designate:

⟦τ⟧M ,g
�

#

I(c) if τ � c P CON

g(x) if τ � x P VAR.

Finally, the interesting semantic clauses are given as follows:

M ,w , v , g ,Weh Pt1 (τ1 , . . . , τn) ô
@@

⟦τ1⟧M ,g , u1
D

, . . . ,
@

⟦τn⟧M ,g , u1
DD

P I(P, u1)

46Wehmeier has indicated in personal communication that something like the proposal given here is the
proposal he would adopt were he to drop the various semantic constraints made in Wehmeier [2012].
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M ,w , v , g ,Weh Ct1 ,...,tn (τ1 , . . . , τn) ô
@@

⟦τ1⟧M ,g , u1
D

, . . . ,
@

⟦τn⟧M ,g , un
DD

P I(C)

M ,w , v , g ,Weh τ « σ ô ⟦τ⟧M ,g
� ⟦σ⟧M ,g

M ,w , v , g ,Weh ◻t1
k φ ô @u P Rru1s : M ,wrk ÞÑ us, u , g ,Weh φ

M ,w , v , g ,Weh @t1 x φ ô @a P δ(u1) : M ,w , v , gx
a ,Weh φ

where:

um �

$

’

’

&

’

’

%

w0 if tm � i

v if tm � s

w j if tm � s j .

Thus, for instance, (Rich*) is formalized as:

◻i
1◇

s
2@s1 x (Richs1 (x) Ñ Poors (x)) . (57)

With Wehmeier’s framework laid out, we now consider the question of whetherLWeh is
intertranslateable with LH, at least over the class of weh-models. First, notice that it’s easy
to give a translation W2H (φ) fromLWeh toLH (assume for simplicity that we replaced the
mood marker i with s0):

W2H (Ps (τ1 , . . . , τn)) � P(τ1 , . . . , τn)

W2H
(
Pt (τ1 , . . . , τn)

)
� @tP(τ1 , . . . , τn)

W2H
(
Ct1 ,...,tn (τ1 , . . . , τn)

)
� C(◀t1τ1 , . . . ,◀tnτn)

W2H (τ « σ) � τ « σ

W2H (¬φ) � ¬W2H (φ)
W2H (φ ^ ψ) � W2H (φ) ^ W2H (ψ)
W2H

(◻s
kφ
)

� ◻sk W2H (φ)

W2H
(◻t

kφ
)

� @t◻sk W2H (φ)
W2H (@s x φ) � @x W2H (φ)

W2H
(
@t x φ

)
� @t x W2H (φ)

where t , s is a mood marker, and t1 , . . . , tn are mood markers (possibly including s). For
example, the translation of (57) is:

@s0◻s1◇s2@s1 x (@s1Rich(x) Ñ Poor(x)) (58)

which is essentially how we formalized (Rich*) in LH, except the s2 in LH isn’t necessary.
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Theorem B.2 (Adequacy of W2H). LetM be a weh-model, w P W , and g an H-variable
assignment overM. Then for any LWeh-formula φ:

M , g(s0), g(s1), g(s2), . . . , w , g ,Weh φ ô M ,w , g ,H φ.

The reverse translation is not as straightforward. The issue we need to deal with is
Ó, which allows one to reset a reference world at will. To deal with this, we need to first
manipulate all LH-formulas into a nice and manageable form.

Definition B.3 (Nice LH-formulas). A LH-formula φ is nice if φ is of the form Ósn .ψ
where:
(i) every term has at most one occurrence of ◀

(ii) s0 is never bound in φ (and thus, s0 , sn)

(iii) there is no occurrence of Ósn . in ψ

(iv) for all s P SVAR where s , sn , there is at most one occurrence of Ós . in ψ

(v) for all s P SVAR, if s has a free occurrence in ψ, then it does not also have a
bound occurrence in ψ

(vi) for all s P SVAR, if Ós . occurs in ψ, then its single occurrence is prefixed by a
◻

(vii) every occurrence of ◻ prefixes an occurrence of Ós . for some s P SVAR

In other words, nice LH-formulas are those such that (a) the state variables are nicely
organized, (b) irrelevant stackings of◀ are removed, (c) every◻ is followed by exactly one
unique Ót ., and (d) apart from the beginning of the formula, that’s the only place where
Ót . show up.

The following is easy to prove, but requires some tedious details and is simply a matter
of reorganizing and rewriting variables appropriately.

Lemma B.4 (Nice Normal Form). EveryLH-formula is equivalent to a niceLH-formula.
Furthermore, there’s a recursive procedure for transforming each LH-formula into
one that’s nice.

So to show that LH can be translated into LWeh, it suffices to show that the nice LH-
formulas can be translated into LWeh. The first step is to extract the “object” and “mood”
parts of a given term as follows:

ob(τ) �

$

’

’

&

’

’

%

c if τ � c P CON

x if τ � x P VAR

ob(σ) if τ � ◀t σ
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mo(τ) �

#

s if τ P CON Y VAR

sk if τ � ◀sk σ.

Now, since every nice LH-formula is of the form Ósn .φ, we define a translation function
H2W (φ) from LH to LWeh by induction on φ.

H2W (P(τ1 , . . . , τn)) � Ps (ob(τ1), . . . , ob(τn))

H2W (C(τ1 , . . . , τn)) � Cmo(τ1),...,mo(τn ) (ob(τ1), . . . , ob(τn))
H2W (τ « σ) � ob(τ) « ob(σ)
H2W (E(τ)) � Ds y (y « ob(τ))
H2W (¬φ) � ¬H2W (φ)

H2W (φ ^ ψ) � H2W (φ) ^ H2W (ψ)
H2W (◻skφ) � ◻s

kH2W (φ)
H2W (@skφ) � H2W (φ) rs{sks

H2W (@x φ) � @s x H2W (φ)

where y does not occur in τ and H2W (φ) rs{ts is the result of replacing every instance of
s that’s not within the scope of a modal with t.47

Theorem B.5 (Adequacy of H2W). LetM be a weh-model, w P W , and g an H-variable
assignment overM. Then for any nice LH-formula Ósn .φ, we have thatM , w , g ,H
Ósn .φ iffM , gsn

w (s0), gsn
w (s1), gsn

w (s2), . . . ,w , gsn
w ,Weh H2W (φ).

Thus, in a very strong sense, we can think ofLH as a generalization of Wehmeier’s original
framework that lifts various restrictions he placed on the models and the syntax.

§C Characterization of Cross-World Formulas
The goal of this section is to prove that Theorem 8.2, viz., that every non-cross-world for-
mula of the form φ(x1 , . . . , xn ; t1 , . . . , tm) is equivalent to a boolean combination of LH-
formulas that are either of the form @tiψ or of the form θ, where ψ and θ are L1M´-
formulas.

Definition C.1 (Cross-world). An LH-formula is explicitly non-cross-world if it nei-
ther contains an instance of ◀ nor an object quantifier scoping over an instance of
@. Thus, non-cross-world formulas are those that are equivalent to some explicitly
non-cross-world formula.

47In the case of ◻s
k , we do not count the s here as being within its own scope, so such an instance of

s would also be replaced by t if its not in the scope of other modals. So for example, H2W (@sk◻snφ) �

H2W (◻snφ) rs{sks � (◻s
sn H2W (φ))rs{sks � ◻sk

n H2W (φ) rs{sks.
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Definition C.2 (Isolation). An isolated atom is any LH-formula either of the form
@tψ or of the form θ where ψ and θ are L1M´-formulas. An LH-formula φ is in
isolated form if it is a boolean combination of isolated atoms.

Clearly, every LH-formula in isolated form is (explicitly) non-cross-world.

Theorem C.3 (Non-Cross-World is Isolation). Every non-cross-world LH-formula is
equivalent to a LH-formula in isolated form.

Theorem C.3 is just a more concise statement of Theorem 8.2.

Proof: It suffices to show the claim for explicitly non-cross-world LH-formulas φ.
We proceed by induction. Clearly this holds for atomics and boolean combinations
of non-cross-world formulas. Furthermore, if @x ψ is an explicitly non-cross-world
formula, then ψ must not contain @, and hence @x ψ is already an L1M´-formula
(and so a fortiori in isolated form). So the interesting cases are the modals.
Necessity. φ � ◻ψ. Since φ is a non-cross-world formula, ψmust be too. By induc-

tive hypothesis, suppose ψ is in isolated form. Using standard rewrite rules
(and since @s and ¬ commute), WLOG, we can suppose ψ is of the form:

ψ �

k
ľ

i�1

(
@t i

1
αi

1 _ ¨ ¨ ¨ _ @t i
ni
αi

ni
_ βi
)

where each α and β is anL1M´-formula. Since◻ distributes over conjunction,
it suffices to check that formulas of the form:

◻ (@t1α1 _ ¨ ¨ ¨ _ @tnαn _ β)

where α1 , . . . , αn , β are L1M´-formulas, can be written as a boolean combina-
tion of isolated atoms. But it’s easy to check that this is equivalent to:

@t1α1 _ ¨ ¨ ¨ _ @tnαn _◻β,
which is a disjunction of isolated atoms. ✓

Actuality. φ � @sψ. Again, WLOG, write ψ as:

ψ �

k
ľ

i�1

(
@t i

1
αi

1 _ ¨ ¨ ¨ _ @t i
ni
αi

ni
_ βi
)

It’s easy to check that @sψ is equivalent to:

k
ľ

i�1
@s
(
@t i

1
αi

1 _ ¨ ¨ ¨ _ @t i
ni
αi

ni
_ βi
)
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which is equivalent to:

k
ľ

i�1

(
@t i

1
αi

1 _ ¨ ¨ ¨ _ @t i
ni
αi

ni
_ @sβ

i
)

which is in isolated form. ✓

Saving. φ � Ós .ψ. Again, WLOG, write ψ as:

ψ �

k
ľ

i�1

(
@t i

1
αi

1 _ ¨ ¨ ¨ _ @t i
ni
αi

ni
_ @sγ

i
1 _ ¨ ¨ ¨ _ @sγ

i
ki

_ βi
)

where also each γ is an L1M´-formula, and where none of t i
1 , . . . , t

i
n are s.

Then Ós .ψ is equivalent to:

k
ľ

i�1

(
@t i

1
αi

1 _ ¨ ¨ ¨ _ @t i
ni
αi

ni
_ γi

1 _ ¨ ¨ ¨ _ γi
ki

_ βi
)

which is in isolated form. ✓ ∎

It follows that, up to equivalence, the non-cross-world LH-formulas are exactly the
LH-formulas in isolated form. Notice that in the proof above, once we’ve rewritten φ into
isolated form, no bound state variables are left: only the free state variables of φ remain
after being transformed into isolated form. In particular, if φ doesn’t contain any free
state variables, then the result of this procedure will be to rewrite φ as an L1M´-formula.
As a result, Theorem C.3 shows that all state-closed non-cross-world LH-formulas are
equivalent to L1M´-formulas. Hence, up to equivalence, the state-closed non-cross-world
LH-formulas are exactly the L1M´-formulas.
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