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Abstract. Many authors have noted that there are types of English modal sentences that cannot
be formalized in the language of basic first-order modal logic. Some widely discussed examples
include “There could have been things other than there actually are” and “Everyone who’s actu-
ally rich could have been poor.” In response to this lack of expressive power, many authors have
discussed extensions of first-order modal logic with two-dimensional operators. But claims about
the relative expressive power of these extensions are often justified only by example rather than
by rigorous proof. In this paper, we provide proofs of many of these claims and present a more
complete picture of the expressive landscape for such languages.

§1 Introduction
It is well known that first-order modal logic faces fundamental limitations in expressive
power. Some standard examples used to illustrate this include:

(E) There could have been things other than there actually are.1

(R) Everyone who’s actually rich could have been poor.2

Informally, the first is true iff there is a possible world where something exists that does not
exist in the actual world. The second has multiple readings, but on one reading, it is true
iff there is a possible world where everyone who is rich in the actual world is poor in that
world. It can been shown that no formula in basic first-order modal logic with actualist
quantifiers (i.e., quantifiers ranging over existents) is equivalent to (E) or to (R).3 We can
regiment (E) using a possibilist quantifier Σ (i.e., a quantifier ranging over all possible
objects) and an existence predicate E as follows:

Σx p¬Epxq ^◇Epxqq . (1)

But one can prove that even with these additions, there is still no formula that is equivalent
to (R).4

1Originally from Hazen [1976, p. 31].
2Originally from Cresswell [1990, p. 34].
3Hodes [1984c].
4Wehmeier [2001].
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In response to these expressive limitations, many authors have considered extending
first-order modal logic with an “actually” operator @.5 They then point out that in the
presence of @ and the possibilist universal quantifier Π, the following is equivalent to (R):

◇Πx p@Richpxq Ñ Poorpxqq . (2)

However, even with possibilist quantifiers and the actuality operator, sentences like the
following seem to remain inexpressible:6

(NR) Necessarily, everyone who’s rich could have been poor.

One could try to fix this problem by adding more and more operators to the language,
some of which we will discuss below. But many such languages face further expressiv-
ity limitations themselves.7 Corresponding expressive limitations also arise for first-order
temporal logic, though we will mostly focus on the modal versions until the end of this
paper.

Very often, these inexpressibility claims are justified in the literature only by exam-
ple: all of the most straightforward attempts at formalizing these English sentences into
first-order modal logic fail. While this style of argument may be convincing, it does not
constitute a proof. One can sometimes find rigorous proofs for a variety of inexpress-
ibility claims.8 But only Hodes [1984a,b,c] provides proofs of the inexpressibility of (R),
(E), and sentences like them in extensions of first-order modal logic with two-dimensional
operators such as @.9 And while these proofs are very interesting and involve a number
of underappreciated techniques, they are quite complicated and difficult to generalize to
other formal languages of interest.

In this paper, I will use a modular notion of bisimulation to characterize the expres-
sive power of extensions of first-order modal logic with two-dimensional operators. Af-
ter reviewing basic first-order modal logic (§2), I will provide a single proof method for
characterizing the expressive power of a wide variety of first-order modal languages us-
ing bisimulations (§3). I will then present a variety of inexpressibility proofs using this
technique (§4). I will conclude by generalizing these results to temporal logics and higher-
dimensional logics (§5). The more intricate details are left to appendices (§A–D).

§2 First-Order Modal Logic
In this section, we review the standard possible worlds semantics for first-order modal
logic. The technical details below are fairly standard, with the exception that our points of
evaluation need to be two-dimensional to account for operators like the actuality operator
@. While we have picked a particularly simple formulation of first-order modal logic, the

5Crossley and Humberstone [1977]; Davies and Humberstone [1980]; Hazen [1976, 1990]; Hodes [1984a,b].
6Hazen [1976]; Bricker [1989]; Cresswell [1990]; Sider [2010].
7van Benthem [1977]; Gabbay [1981]; Cresswell [1990].
8See Fine [1979]; Hodes [1984a,b,c]; Forbes [1989]; Wehmeier [2001]; Fritz [2012]; Yanovich [2015].
9Forbes [1989, pp. 42–44] gives some inexpressibility results for first-order modal logic with @. See also

Correia [2007]; Fritz [2012]; Yanovich [2015] for work on related languages.
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inexpressibility results we explore in this paper apply to a wide range of formulations of
first-order modal logic.10

The signature for our plain vanilla first-order modal language L1M contains:

• VAR = tx1, x2, x3, . . .u (the set of (object) variables);
• PREDn = tPn

1, P
n
2, P

n
3, . . .u for each n ě 1 (the set of n-place predicates);

The set of formulas in L1M or L1M-formulas is defined recursively:

φF Pnpy1, . . . , ynq | ¬φ | pφ ^ φq | ◻φ | @xφ

where Pn P PREDn for any n ě 1, and x, y1, . . . , yn P VAR. The usual abbreviations for K, _,
Ñ, Ø, D, and◇ apply. We may drop parentheses for readability. If the free variables of φ
are among y1, . . . , yn, we may write “φpy1, . . . , ynq” to indicate this.

To talk more easily about extensions ofL1M, we will introduce a convention. Let S 1, . . . , S n

be some new symbols with pre-defined syntax. The language obtained fromL1M by adding
S 1, . . . , S n is L1MpS 1, . . . , S nq. Some symbols that might be added include:

φF ¨ ¨ ¨ | x « y | Epyq | @φ | Óφ | F φ | @@xφ | Πxφ

where « is the identity relation, E is an existence predicate, @ is an “actually” operator, Ó

is a diagonalization operator (the inverse of @),11 F is a “fixedly” operator,12 @@ is a quan-
tifier over all actual objects,13 and Π is the possibilist universal quantifier (its existential
counterpart is Σ). The usual abbreviations apply. In what follows, we will let “L” stand
for any arbitrary L1MpS 1, . . . , S nq where S 1, . . . , S n are among the symbols above.

Definition 2.1 (Models). A model is a tupleM = xW,R, F,D, δ, Iy where:
• W is a nonempty set (the state space);
• R Ď W ˆ W (the ◻-accessibility relation);
• F Ď W ˆ W (the F -accessibility relation);
• D is a nonempty set disjoint from W (the (global) domain);
• δ : W Ñ ℘ pDq is a function (the local domain assignment), where for each

w P W, δpwq is the local domain of w;
• I : PREDn ˆ W Ñ ℘ pDnq (for all n ě 1) is a function (the interpretation func-

tion).

We will letM’s state space be WM,M’s ◻-accessibility relation be RM, etc. We will define
Rrws B tv P W | wRvu (and likewise for F). If R “ W ˆ W, we will say R is universal. If
D “

Ť

wPW δpwq (i.e., D does not contain impossible objects), we will say D satisfies the
domain constraint. We will let U be the class of models where R and F are universal, D be
the class of models where D satisfies the domain constraint, and UD be their intersection.

10See Garson [2001] for a tree of such formulations.
11Vlach [1973]; Lewis [1973].
12Davies and Humberstone [1980].
13Bricker [1989]; Gilbert [2015].
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LetM be a model. A variable assignment forM is a function g mapping variables to
elements in D. Let the set of variable assignments forM be VApMq. If g P VApMq, then gx

a
is the result of modifying g by mapping x to a.

For readability, if α1, . . . , αn is a sequence (of terms, objects, etc.), we may write “α” in
place of “α1, . . . , αn”. α is assumed to be of the appropriate length, whatever that is in a
given context. Let |α| be the length of α. When f is some unary function, we may write
“ f pαq” in place of “ f pα1q, . . . , f pαnq”. For instance, if g is a variable assignment, “gpxq” on
this notation stands for “gpx1q, . . . , gpxnq”. Likewise, “gx

a” stands for “gx1,...,xn
a1,...,an

”.
Since we want to consider operators like @, our possible worlds semantics will be two-

dimensional (as suggested in, e.g., Davies and Humberstone [1980, pp. 4-5]). That is,
indices will have to contain two worlds. The first world is to be interpreted as the world
“considered as actual” and the second as the world of evaluation.

Definition 2.2 (Satisfaction for L1M). The L-satisfaction relation , is defined recur-
sively, for all modelsM “ xW,R, F,D, δ, Iy, all w, v P W and all g P VApMq:

M,w, v, g , Pnpxq ô xgpxqy P IpPn, vq

M,w, v, g , x « y ô gpxq “ gpyq

M,w, v, g , Epxq ô gpxq P δpvq

M,w, v, g , ¬φ ô M,w, v, g . φ

M,w, v, g , φ ^ ψ ô M,w, v, g , φ andM,w, v, g , ψ

M,w, v, g , ◻φ ô @v1 P Rrvs : M,w, v1, g , φ

M,w, v, g , @φ ô M,w,w, g , φ

M,w, v, g , Óφ ô M, v, v, g , φ

M,w, v, g , F φ ô @w1 P Frws : M,w1, v, g , φ

M,w, v, g , @xφ ô @a P δpvq : M,w, v, gx
a , φ

M,w, v, g , @@xφ ô @a P δpwq : M,w, v, gx
a , φ

M,w, v, g , Πxφ ô @a P D : M,w, v, gx
a , φ.

If |x| ď |a|, thenM,w, v , φras if for all g P VApMq,M,w, v, gx
a , φpxq.

Definition 2.3 (Validity). Let C be a class of models. We will say φ is (generally)
C-valid—written as ,C φ—ifM,w, v, g , φ for allM P C, all w, v P WM, and all
g P VApMq. We will say φ is diagonally C-valid—written as ,d

C φ—ifM,w,w, g , φ

for allM P C, all w P WM, and all g P VApMq. If φ Ø ψ is (diagonally) C-valid, we
will say φ and ψ are (diagonally) C-equivalent. If C is the class of all models, we
may drop mention of C and just say “valid” or “equivalent”.

We could have defined some of the additional symbols above in terms of others, as-
suming the others are present. For instance, Epxq Ø Dy px « yq, @xφ Ø Πx pEpxq Ñ φq,
and @@xφ Ø Πx p@Epxq Ñ φq are all valid (we will invoke these throughout without ex-
plicit mention of them). Thus, by the following lemma, we could have taken the lefthand
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side of these biconditionals to be abbreviations for their righthand side:

Lemma 2.4 (Replacement of Equivalents). Suppose φ and ψ have the same free vari-
ables. Let θ1 be a formula that results from replacing any number of instances of φ
in θ with ψ. Then ,C φ Ø ψ implies ,C θ Ø θ1.

This follows by a straightforward induction. If we replace ,C in Lemma 2.4 with ,d
C, then

the result no longer holds (for instance, ,d @Ppxq Ø Ppxq, but .d ◻@Ppxq Ø ◻Ppxq).
However, if ,d

C φ Ø ψ, then ,C ‹φ Ø ‹ψ, where ‹ P t@, Óu, in which case we can replace
‹φ with ‹ψ.

We can think of Definition 2.2 as specifying a translation from the modal language into
the language of possible worlds. We can make this more precise by formally defining the
language of possible worlds, which is often called the correspondence language.14 The
correspondence language is a two-sorted first-order language: one sort for objects, and
one sort for worlds. The signature for our two-sorted first-order language LTS contains
VAR, PRED, and:

• SVAR = ts1, s2, s3, . . .u (the set of state variables).

The set of formulas in LTS or LTS-formulas is defined recursively:

αF Pnpy; sq | x « y | s « t | Epy; sq | Rps, tq | Fps, tq | ¬α | pα ^ αq | @xα | @sα

where Pn P PREDn, x, y, y P VAR, and s, t P SVAR. I will typically use α, β, γ, . . . for LTS-
formulas to distinguish them from L1M-formulas.

To illustrate, here are the intended formalizations of (E), (R), and (NR), where s˚ is
meant to be interpreted as the actual world (which we will assume is the same as our
starting world of evaluation, just for simplicity):15

(E) There could have been things other than there actually are.

Dt pRps˚, tq ^ Dx pEpx; tq ^ ¬Epx; s˚qqq (3)

(R) Everyone who’s actually rich could have been poor.

Dt pRps˚, tq ^ @x pRichpx; s˚q Ñ Poorpx; tqqq (4)

(NR) Necessarily, everyone who’s rich could have been poor.

@s pRps˚, sq Ñ Dt pRps, tq ^ @x pRichpx; sq Ñ Poorpx; tqqqq (5)
14See Blackburn et al. [2001].
15There is a general question as to whether the object quantifier in (R) and (NR) is possibilist or actualist. In

general, I assume it should be actualist, in which case the object quantifiers in (4) and (5) should technically
be E-bounded. But to avoid clutter, we assume in the background that nothing can be rich or poor unless it
exists (@s @x ppRichpx; sq _ Poorpx; sqq Ñ Epx; sqq), in which case it does not matter which type of quantifier
we use in (4) and (5). None of our models will violate this constraint.
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To define LTS’s semantics, we need to modify the definition of a variable assignment for
M so that not only do variable assignments map variables to elements of D, but they also
map state variables to elements of W. Then satisfaction in LTS is just the standard notion
of satisfaction for two-sorted first-order logic:

Definition 2.5 (Satisfaction for LTS). The LTS-satisfaction relation ( is defined re-
cursively for all modelsM and all g P VApMq:

M, g ( Pnpx; sq ô xgpxqy P IpPn, gpsqq M, g ( Fps, tq ô gptq P Frgpsqs

M, g ( x « y ô gpxq “ gpyq M, g ( ¬α ô M, g * α

M, g ( s « t ô gpsq “ gptq M, g ( α ^ β ô M, g ( α andM, g ( β

M, g ( Epx; sq ô gpxq P δpgpsqq M, g ( @xα ô @a P D : M, gx
a ( α

M, g ( Rps, tq ô gptq P Rrgpsqs M, g ( @sα ô @w P W : M, gs
w ( α.

We say α is C-valid—written as (C α—ifM, g ( α for allM P C and all g P VApMq.
Equivalence is defined likewise.

We can now make more precise the thought that Definition 2.2 is specifying a translation:

Definition 2.6 (Standard Translation). Let φ be a L-formula, and let s, t P SVAR. The
standard translation of φ with respect to xs, ty, STs,t pφq, is defined recursively:

STs,t pPnpxqq “ Pnpx; tq STs,t pF φq “ @s1 pFps, s1q Ñ STs1,t pφqq

STs,t px « yq “ x « y STs,t p@φq “ STs,s pφq

STs,t pEpxqq “ Epx; tq STs,t pÓφq “ STt,t pφq

STs,t p¬φq “ ¬ STs,t pφq STs,t p@xφq “ @x pEpx; tq Ñ STs,t pφqq

STs,t pφ ^ ψq “ pSTs,t pφq ^ STs,t pψqq STs,t p@@xφq “ @x pEpx; sq Ñ STs,t pφqq

STs,t p◻φq “ @t1 pRpt, t1q Ñ STs,t1 pφqq STs,t pΠxφq “ @x STs,t pφq

where s1 and t1 are state variables not occurring anywhere in STs,t pφq. If Φ is a set of
L-formulas, then we will let STs,t pΦq “ tSTs,t pφq |φ P Φu.

The following lemma, which can be proved using a simple induction on formulas, states
that ST translates every L-formula into an equivalent LTS-formula:

Lemma 2.7 (Translation). LetM be a model, w, v P WM, g P VApMq, s, t P SVAR, and
φ an L-formula. ThenM,w, v, g , φ iffM, gs,t

w,v ( STs,t pφq.

In other words, Lemma 2.7 tells us that we can think of “M,w, v, g , φ” as a notational
variant of “M, gs,t

w,v ( STs,t pφq”. In what follows, we will implicitly identify an extension of
L1M with its equivalent fragment of the two-sorted language. The question now is to what
extent we can find a translation that goes the other way. To help answer this question, we
can define a formal notion of expressivity relative to LTS as follows:
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Definition 2.8 (Expressivity). Let C be a class of models. We will say a set of LTS-
formulas Γ C-expresses a set of LTS-formulas ∆ if Γ is C-equivalent to ∆—that is,
for allM P C and all g P VApMq, we have thatM, g , Γ iffM, g , ∆. If either Γ or ∆
are singletons, we can drop the set brackets for readability. Where L is a fragment
of LTS, we will say Γ is C-expressible in L if there is a set of L-formulas that C-
expresses Γ. Where L1 and L2 are fragments of LTS, we will say L2 C-expresses
L1 or L1 is C-included in L2—written as L1 ďC L2—if for any set of L1-formulas
Γ, there is a set of L2-formulas ∆ that C-expresses Γ. We will write L1 ăC L2 if
L1 ďC L2 and L2 ęC L1, and L1 ”C L2 if L1 ďC L2 and L2 ďC L1.

These definitions apply to extensions ofL1M, viewed as fragments ofLTS. Thus,
where Γ is a set of LTS-formulas, and where L is an extension of L1M, we will say
Γ is C-expressible in L if there is a set of L-formulas Φ such that Γ is C-equivalent
to STs,t pΦq. Likewise, ifL1 andL2 are extensions of first-order modal logic, we will
write L1 ďC L2 if for any set of L1-formulas Φ, there is a set of L2-formulas Ψ such
that STs,t pΦq is C-equivalent to STs,t pΨq. Similarly for ăC and ”C.

§3 Bisimulation
To show that no formula (or set of formulas) of a modal language L can express a certain
formula α of LTS, one must generally construct two models such that (a) they agree in L
on all L-formulas (i.e., they are L-equivalent), and (b) they disagree in LTS on α. To make
showing that such models are L-equivalent easier, we can appeal to the notion of a bisim-
ulation.16 The notion of a bisimulation for first-order modal logic has not been discussed
much until recently.17 Below, we extend the notion of bisimulation in order to ensure modal
equivalence for formulas involving two-dimensional operators.

A bisimulation is basically a back-and-forth game. In the standard back-and-forth game
for (non-modal) first-order logic, there are two players, Abelard and Eloïse. Abelard aims
to refute Eloïse’s attempt to show that the two models satisfy the same closed formulas.
Abelard starts by picking an object from one of the models. Eloïse must then pick a match-
ing object from the other model that satisfies the same atomic formulas. They continue in
this manner, making sure at all times that the objects picked out so far from one model
satisfy exactly the same atomic formulas that the objects picked out from the other model
satisfy. If at any point the objects picked out from one model do not satisfy the same atomic
formulas as the objects picked out from the other model, then Abelard wins. But if Eloïse
manages to extend the game out for an infinite number of rounds, she wins. Two first-order
models are elementarily equivalent (i.e., satisfy the same closed first-order formulas) if (but
not only if) Eloïse has a winning strategy in this game for those models.

Likewise, two modal models satisfy the same L1M-formulas if Eloïse has a winning
strategy for a back-and-forth game like the one above, with some modifications. In the
modified game, the game is “located” at some world(s) in the two models. When Abelard

16See Blackburn et al. [2001, Chp. 2] for an introduction to bisimulations.
17See Fine [1981]; Sturm and Wolter [2001]; van Benthem [2010]; Fritz [2012]; Yanovich [2015].
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picks an object from the model, he must pick an object that exists at the world where the
game is located; likewise with Eloïse. Now the catch: Abelard can choose, at any time, to
change the location of the game in either model to any accessible world from the current
location. In order to keep playing, Eloïse must likewise pick a matching accessible world
in the other model to relocate the game to. The game then relocates to those accessible
worlds, and the game continues. As before, if the objects that have been picked out from
one model do not satisfy the same atomic formulas at the game’s current location that are
satisfied by the objects picked out from the other model, then Abelard wins. But if Eloïse
manages to extend the game out for an infinite number of rounds, she wins. Two worlds
in two models will satisfy the same L1M-formulas if Eloïse has a winning strategy in this
game, where the game starts at those two worlds. More variations arise when different
extensions of L1M are considered. More precisely:

Definition 3.1 (Bisimulation). Let M and N be models. An L1M-bisimulation be-
tweenM and N is a nonempty variably polyadic relation Z such that for all w, v P

WM, all w1, v1 P WN , all finite a P DM, and all finite b P DN where |a| “ |b|, we have
that Zpw, v, a;w1, v1, bq only if:
(Atomic) @m P N@Pm P PREDm @i1, . . . , im ď |a| :

xai1 , . . . , aimy P IMpPm, vq ô xbi1 , . . . , bimy P INpPm, v1q

(Zig) @u P RMrvs Du1 P RN rv1s : Zpw, u, a;w1, u1, bq

(Zag) @u1 P RN rv1s Du P RMrvs : Zpw, u, a;w1, u1, bq

(Forth) @a1 P δMpvq Db1 P δNpv1q : Zpw, v, a, a1;w1, v1, b, b1q

(Back) @b1 P δNpv1q Da1 P δMpvq : Zpw, v, a, a1;w1, v1, b, b1q.

We may write “M,w, v, a Ô N ,w1, v1, b” (where possibly |a| “ |b| “ 0) to indicate
thatM,w, v, a and N ,w1, v1, b are L1M-bisimilar, i.e., that there is a bisimulation Z
betweenM and N such that Zpw, v, a;w1, v1, bq.

The notion of anL1MpS 1, . . . , S nq-bisimulation betweenM andN is defined sim-
ilarly, except one must add the corresponding condition(s) below:

(Eq) @n,m ď |a| : an “ am iff bn “ bm

(Ex) @n ď |a| : an P δMpvq iff bn P δNpv1q

(Act) Zpw,w, a;w1,w1, bq

(Diag) Zpv, v, a; v1, v1, bq

(F -Zig) @u P FMrws Du1 P FN rw1s : Zpu, v, a; u1, v1, bq

(F -Zag) @u1 P FN rw1s Du P FMrws : Zpu, v, a; u1, v1, bq

(@@-Forth) @a1 P δMpwq Db1 P δNpw1q : Zpw, v, a, a1;w1, v1, b, b1q

8
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(@@-Back) @b1 P δNpwq Da1 P δMpw1q : Zpw, v, a, a1;w1, v1, b, b1q

(Π-Forth) @a1 P DM Db1 P DN : Zpw, v, a, a1;w1, v1, b, b1q

(Π-Back) @b1 P DN Da1 P DM : Zpw, v, a, a1;w1, v1, b, b1q.

We may write “M,w, v, a ÔL N ,w1, v1, b” to indicate thatM,w, v, a andN ,w1, v1, b are
L-bisimilar. We may also sometimes write “M,w, v, a ÔS 1,...,S n N ,w1, v1, b”, where
L “ L1MpS 1, . . . , S nq, for readability.

Here are the various conditions phrased in terms of games. (Atomic) says that Eloïse
loses unless a satisfy the same atomic formulas inM,w, v that b satisfy in N ,w1, v1. (Zig)
says that if Abelard decides to move the game to xw, uy inMwhere u P RMrvs, Eloïse must
choose a u1 P RN rv1s and relocate the game in N to xw1, u1y to continue. Likewise for (Zag).
(Forth) says that if Abelard picks an object a1 from v, Eloïse must pick an object b1 from v1

to match it with. Likewise for (Back). (Eq) says that if Abelard picks an object that was
already chosen, Eloïse must pick the matching object. (Ex) says that the objects picked
have to agree in terms of existence, even when the game relocates. (Act) says that Abelard
can force the game to relocate to xw,wy and xw1,w1y. Likewise for (Diag). The other clauses
are as before, except with respect to different domains and relations.

Definition 3.2 (Modal Equivalence). We will say that M,w, v, a and N ,w1, v1, b are
L-equivalent or modally equivalent if for all L-formulas φpxq (where |x| ď |a|),
M,w, v , φras iff N ,w1, v1 , φrbs. We may write “M,w, v, a ”L N ,w1, v1, b” to indi-
cate thatM,w, v, a and N ,w1, v1, b are L-equivalent.

Theorem 3.3 (Bisimulation Implies Modal Equivalence). Where L “ L1MpS 1, . . . , S nq,
ifM,w, v, a ÔL N ,w1, v1, b, thenM,w, v, a ”L N ,w1, v1, b.

In general, modal equivalence does not imply bisimulation.18 However, it does when
infinitary conjunction is present in the language. Consider the symbol

Ź

with the follow-
ing formation rule: if Φ is a set of well-formed formulas (of any size), then

Ź

Φ is a well-
formed formula. Then M,w, v, a ”Ź

,S 1,...,S n N ,w1, v1, b iff M,w, v, a ÔS 1,...,S n N ,w1, v1, b.19
Thus, bisimulation is equivalent to infinitary modal equivalence. No bisimulation clauses
need to be added for

Ź

.
Adding infinitary conjunction to the language clearly increases the expressive power of

the language. For example, one can regiment the sentence “There are infinitely many rich
people” as

Ź

nPω Děnx Richpxq, where
Ź

nPω φn is short for the formula
Ź

tφn | n P ωu, and
Děnxφpxq is short for the formula Dx1 ¨ ¨ ¨ Dxn

`
Źn

i“1 φpxiq ^
Ź

i‰ j xi ff x j
˘

. However, infini-
tary conjunction does not increase the expressive power enough to overcome the particular
expressive limitations discussed here, so we set it aside in what follows.

18See Blackburn et al. [2001, p. 68] for the proof in the propositional case.
19See Goranko and Otto [2007] for a proof in the propositional case. Generalizing to first-order modal logic

is straightforward.
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§4 Inexpressibility Alex Kocurek

Now, recall the definition of expressibility (Definition 2.8).

Corollary 3.4 (Translation Implies Invariance). Let αpx; s, tq be an LTS-formula. Given
M,w, v, a ÔS 1,...,S n N ,w1, v1, b, and given α is equivalent to the translation of some set
of L1MpS 1, . . . , S nq-formulas, thenM ( αra;w, vs iff N ( αrb;w1, v1s. In other words,
ifM,w, v, a andN ,w1, v1, b areL1MpS 1, . . . , S nq-bisimilar, but they disagree on α, then
α is not expressible as a set of L1MpS 1, . . . , S nq-formulas.

Corollary 3.4 says that if aLTS-formula is equivalent to the translation of anL-formula
(or a set of L-formulas), then it is preserved under L-bisimulations. As in propositional
modal logic, the converse also holds (see §A for the proof).20

Theorem 3.5 (van Benthem Characterization Theorem). Let αpx; s, tq be anLTS-formula
such thatM ( αra;w, vs iffN ( αrb;w1, v1s given thatM,w, v, a ÔL N ,w1, v1, b. Then
α is equivalent to the translation of some L-formula.

This together with Theorem 3.3 implies thatL is just theL-bisimulation invariant fragment
of LTS. For our purposes, however, Corollary 3.4 will be the key result in generating the
inexpressibility results below.

§4 Inexpressibility

While Corollary 3.4 and Theorem 3.5 exactly characterize the expressive power of L1M

and its various extensions, the characterization is a bit abstract, and it does not automat-
ically tell us what the expressive power of these extensions are relative to one another.
We now turn to illustrating the expressive limitations of L1M and its extensions with con-
crete examples. Note that all of our models in this section fall in the class UD, so these
inexpressibility results therefore apply to any class that includes UD.

To warm up, we start by showing that (E) is not expressible in L1M. Recall (E) says that
there could have been things other than there are, which is formalized in LTS as (3):

Dt pRps˚, tq ^ Dx pEpx; tq ^ ¬Epx; s˚qqq . (3)

The proof strategy will always be the same: construct two modal models that are bisimilar,
but that disagree on (3). Because we do not have « in L1M by default, this is actually very
easy. Let E “ xW,R, F,D, δ, Iy, where W “ tw, vu, R and F are universal, D “ δpwq “

δpvq “ tau, and IpP, uq “ H. Let E1 “ xW,R, F,D1, δ1, Iy, where everything is as in E, except
D1 “ δ1pvq “ ta, bu. See Figure 1 for a picture.

It is easy to see that w inEdoes not satisfy (3): every possible object exists at w. However,
w in E1 does satisfy (3): b is a possible object that does not exist at w. So E,w and E1,w
disagree on (3). So we just need to show that E,w,w Ô E1,w,w. In fact, in this case, we
can just take Z to map every world to every world, and every object to every object any

20The proof is essentially the same as the proof for propositional modal logic. See Blackburn et al. [2001,
Chp. 2.6] and Sturm and Wolter [2001, pp. 579–580].
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a

w

a

v

E

a

w

a, b

v

E1

Figure 1: L1M-bisimilar models that disagree on (E).

number of times. To show this is a bisimulation, we just check each of the clauses from
Definition 3.1 holds, which is easy to do. One might initially think that we will run into
problems in trying to show (Back) holds; for if we consider Zpw, v, a;w, v, aq, and we decide
to pick b from δ1pvq, then we cannot pick b from δpvq to match it with. But since a and b do
not disagree on any predicates, and since « is not present in the language, L1M cannot tell
that a and b are distinct objects anyway. We do not have to match a to a and b to b every
time. We can just as well match b in δ1pvq with a in δpvq.

What made this proof easy was the absence of «. Now we will show that evenL1Mp«q

cannot express (E).21 Consider first E1 “ xW1,W2
1 ,W

2
1 ,N, δ1, I1y, where the global domain

is N and the accessibility relations are both universal. For each nonempty finite or cofinite
S Ď N, there is a world wS P W1 such that δ1pwS q “ S . No other worlds are in W1. Again, the
extension of all non-logical predicates will be empty at all worlds. The second model E2 “

xW2,W2
2 ,W

2
2 ,N Y t8u , δ2, I2y is similar to the first, but now the global domain contains an

additional object 8. For each nonempty set S that is either finite or cofinite in N8 B
N Y t8u, there is a world wS P W2 such that δ2pwS q “ S . See Figure 2 for a picture.

21A proof of this was suggested by Hazen [1976, p. 35]. He describes his models as follows:
For suppose that [(3)] is false, that the actual world is the only one with infinitely many individ-
uals, and that for every finite set of individuals in the actual world there is a world containing
just those individuals, and consider the purely logical sentences true under those suppositions.
Now suppose there is added to the system of possible worlds a new world for each old world,
containing all the same individuals plus one new individual (the same for each new world)
not in any old world. [(3)] will have become true, but no purely logical sentence of the modal
language will have changed its truth value.

However, the proof is not correct as stated, since the second model, but not the first, satisfies the formula
◇Dx◻pEpxq Ñ Dz px ff zqq (there is no world where this new object exists by itself). The natural fix is to add
another world to the second model which only contains the new object. The resulting models (which are like
ours except the worlds with cofinite domains are removed) satisfy the sameL1Mp«q-formulas, but they are not
bisimilar, since they are distinguished by theL1Mp

Ź

,«q-formula◇Dx◇ p
Ź

nPω Děny Epyq ^ ¬Epxqq. However,
if you restrict the L1Mp«q-bisimulation game to n-steps, for any finite n, then Eloïse has a winning strategy
(that is, the models are n-bisimilar for every n); and this suffices to guarantee modal equivalence. Here, we
ensure full bisimilarity by including worlds with cofinite domains. Thus, our proof shows that (3) is not even
expressible in L1Mp

Ź

,«q.

11
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N

wN

N ´ S

wN´S

S

wS

E1

@S Ď N
S finite
S ‰ H

@S Ď N
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S ‰ H

N

wN

N ´ S

wN´S

S

wS

N,8

wN8

N ´ S ,8

wN8´S

S ,8

wS Yt8u

E2

@S Ď N
S finite
S ‰ H

@S Ď N
S finite
S ‰ H

@S Ď N
S finite

@S Ď N
S finite
S ‰ H

Figure 2: L1Mp«q-bisimilar models disagreeing on (E).

Since δ1pwNq “ N “ D, wN in E1 does not satisfy (3). But wN in E2 does satisfy (3),
since 8 R δ2pwNq. So E1,wN and E2,wN disagree on (3). So we just need to show that
E1,wN,wN Ô« E2,wN,wN. Constructing the bisimulation is fairly straightforward (albeit
tedious) once we work out what Eloïse’s winning strategy is. The construction of the bisim-
ulation is given in §B, but the idea in terms of games is sketched below. To help describe
the proof, let us introduce the following useful definition:

Definition 4.1 (Partial Isomorphism). A partial isomorphism betweenM,w, v, a and
N ,w1, v1, b is a finite partial map ρ : D Ñ D1 such that ρpaiq “ bi for i ď |a| and:
(Predicate) @m P N@Pm P PREDm @c1, . . . , cm P dom pρq :

xc1, . . . , cmy P IMpPm, vq ô xρpc1q, . . . , ρpcmqy P INpPm, v1q.

(Existence) @a P dom pρq : a P δMpvq iff ρpaq P δNpv1q.

(Equality) @c, d P dom pρq : ρpcq “ ρpdq ñ c “ d.

We writeM,w, v, a » N ,w1, v1, b to indicate that there is a partial isomorphism be-
tweenM,w, v, a and N ,w1, v1, b.

12



§4 Inexpressibility Alex Kocurek

To say thatM,w, v, a » N ,w1, v1, b is essentially to say that Eloïse can continue the game
(i.e., Abelard has not won yet) at this stage of the game (even with « present).

Proposition 4.2 (Inexpressibility of (E)). E1,wN,wN Ô« E2,wN,wN. But E2 ( p3qrwNs

while E1 * p3qrwNs. Hence, (3) is not expressible in L1Mp«q.

Proof (Sketch): Our game starts at E1,wN,wN and E2,wN,wN. We will describe a
strategy for Eloïse such that, at every stage of the game, which we will represent as
xwN, v1, a;wN, v2, by, we have that E1,wN, v1, a » E2,wN, v2, b (in other words: Eloïse
can continue the game at every stage of the game). We construct the strategy by
induction on Abelard’s move.

Vacuously,E1,wN,wN » E2,wN,wN. So suppose xwN, v1, a1;wN, v2, by is the current
stage of the game, where E1,wN, v1, a » E2,wN, v2, b and where |δ1pv1q| “ |δ2pv2q|,
i.e., the size of δ1pv1q and δ2pv2q is the same. Abelard can decide either to pick an
object from δ1pv1q or δ2pv2q, or to relocate the game. By the fact that E1,wN, v1, a »

E2,wN, v2, b and that |δ1pv1q| “ |δ2pv2q|, it follows that |δ1pv1q ´ tau| “ |δ2pv2q ´ tbu|.
So if Abelard decides to pick a new object from one of v1 and v2, Eloïse can always
pick a matching object from the local domain of the other world to continue the
game.

Suppose instead that Abelard decides to relocate the game. Eloïse should then
chose a world in the other model so that the following holds of the new locations u1
and u2: (i) |δ1pu1q| “ |δ2pu2q|, and (ii) ai P δ1pu1q iff bi P δ2pu2q. Since there are only
finitely many a at any given stage of the game, this will always be possible. And as
long as (ii) holds, we will have thatM,wN, u1, a »M,wN, u2, b. ∎

Notice that this proof will fail under a variety of extensions of L1Mp«q. This is easy to
see if the extension can express (3) directly, as does L1Mp«,@q and L1Mp«,Πq:

◇Dx @¬Epxq (6)
Σx p◇Epxq ^ ¬Epxqq. (7)

But it is also instructive to see where the proof for Proposition 4.2 fails for these exten-
sions. If we were to add Π, then Abelard would be allowed to pick any object from the
global domain of either model. In that case, partial isomorphism is no longer enough
to guarantee that Eloïse can continue in this game. For Eloïse to continue the game at
xwN, v1, a;wN, v2, by, we also need to ensure that |N ´ δ1pv1q| “ |N8 ´ δ2pv2q|. Otherwise, if
say |N ´ δ1pv1q| ă |N8 ´ δ2pv2q|, Abelard could keep picking objects from N ´ δ1pv1q until
he ran out (since |N ´ δ1pv1q| ă |N8 ´ δ2pv2q| would imply that N ´ δ1pv1q is finite). Then
he could pick whatever unmatched objects remain in N8 ´ δ2pv2q. In response, Eloïse
would be forced to match Abelard’s object either with an object not in N ´ δ1pv1q, thus
violating (Ex) from Definition 3.1, or with an object in N ´ δ1pv1q that was already cho-
sen, thus matching a previously unmatched object to a previously matched object and
violating (Eq). So we need to be able to ensure that |N ´ δ1pv1q| “ |N8 ´ δ2pv2q| at every
stage of the game, which we can do except at one very crucial point, viz., the beginning:

13



§4 Inexpressibility Alex Kocurek

|N ´ δ1pwNq| ‰ |N8 ´ δ2pwNq|. In other words, Abelard can force a win just by picking 8

from D2, leaving Eloïse unable to pick a matching object while meeting (Ex). Without Π,
this winning strategy for Abelard is blocked.

If we add @, then Abelard can force the location of the game in both models to move
back to wN. In the proof of Proposition 4.2 above, it is crucial that Eloïse can choose to
relocate to a world similar enough to the actual world. For instance, suppose on round
1, Abelard chooses to move to wt8u in E2. Then Eloïse must choose to move to some wtnu

in E1—let us say wt5u. Abelard can then choose 8 from δ2pwt8uq, forcing Eloïse to choose
5. At this point, if Abelard decided to relocate the game back to wN in both models, then
he could choose 5 from E1, and Eloïse would lose by violating (Eq). But without @, while
Abelard can choose to relocate the game to wN in E2, say, Eloïse does not have to relocate
the game to wN in E1; she can, for instance, pick to relocate to wN´t5u in E1.

Let us now turn to showing a more difficult inexpressibility result, viz., that (R) is not
expressible in L1Mp«,@q.22 Recall (R) says that everyone who is actually rich could have
been poor, which is formalized in LTS as (4):

Dt pRps˚, tq ^ @x pRichpx; s˚q Ñ Poorpx; tqqq . (4)

Let N´ B Z ´ N. We let R1 “ xW1,R1, F1,D1, δ1, I1y and R2 “ xW2,R2, F2,D2, δ2, I2y, where
D1 “ D2 “ Z and the accessibility relations are universal for both models. There is a world
w P W1 that will act as our actual world, where every positive integer is rich (top half of
circle), and every negative integer is poor (bottom half of circle). For each nonempty finite
subset S Ď N, there is a world vS P W1 where the members of S do not exist, and otherwise
the rich and the poor are flipped with respect to w; so at vS , the negative integers are rich,
and the positive integers not in S are poor, and the positive integers in S do not exist. The
extension of all other predicates is empty. The only difference between R1 and R2 is that
R2 includes an additional world vH P W2, where no integer fails to exist, and where the
rich and poor are flipped with respect to w. See Figure 3 for a picture.
R2 ( p4qrws, since vH is the world where everyone rich in w is poor. But R1 * p4qrws,

since in every world where something that is rich in w is poor, something that is rich in w
does not exist (and hence is not poor). And once again, R1,w,w Ô«,@ R2,w,w. The details
are left to §B, but a proof is sketched in terms of games below.

Proposition 4.3 (Inexpressibility of (R)). R1,w,w Ô«,@ R2,w,w. But R2 ( p4qrws even
though R1 * p4qrws. Hence, (4) is not expressible in L1Mp«,@q.

22Yanovich [2015, p. 87] claims to have shown that ◇Πx p@Qpxq Ñ Qpxqq is not expressible in L1Mp«,Πq.
He proceeds, as we do, by constructing two models that disagree on this sentence, and then argues that they
are bisimilar. His first model consists of two worlds w and u, where R “ txw, uyu and where in both w and
u, a1, a2, a3, . . . satisfy Qpxq and b1, b2, b3, . . . do not satisfy Qpxq. His second model consists of worlds w1, u1

1,
and u1

2, where R1 “ txw1, u1
1y , xw1, u1

2yu. In w1, c1, c2, c3, . . . , d1, d2, d3, . . . satisfy Qpxq while e1, e2, e3, . . . do not.
In u1

1, only c1, c2, c3, . . . satisfy Q, and in u1
2, only d1, d2, d3, . . . satisfy Q. He then claims that w and w1 are

L1Mp«,Πq-bisimilar. However, these models are not L1Mp«,Πq-bisimilar. In fact, they do not even satisfy the
same L1MpΠq-formulas: e.g., Σx pQpxq ^◇¬Qpxqq distinguishes the two models. The claim that L1Mp@,Πq

is not included in L1Mp«,Πq is still correct, as can be verified with a bisimulation argument using the models
N1,w,w andN2,w,w defined in Figure 4 below (where w “ wH

H). Another proof thatL1Mp«,Πq cannot express
(R) can be found in Wehmeier [2001].
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Figure 3: L1Mp@q-bisimilar models disagreeing on (R). The top half of each circle satisfies
Rich, while the bottom half satisfies Poor; at each vS , the members of S do not exist.

Proof (Sketch): Our game starts atR1,w,w andR2,w,w. As before, we will describe a
winning strategy for Eloïse such that, at every stage xw, v, a;w, v1, by of theL1Mp«,@q-
bisimulation game, R1,w, v, a » R2,w, v1, b.

Again, vacuously, R1,w,w » R2,w,w. So suppose xw, u1, a;w, u2, by is the current
stage of the game, where R1,w, u1, a » R2,w, u2, b and where ai is positive (i.e., in N)
iff bi is positive. We will show that this continues to be true regardless of Abelard’s
move. If Abelard decides to pick a new object from δ1pu1q or δ2pu2q, it will either
be positive or negative. Since there are infinitely many of both, Eloïse will have no
trouble picking a new one; and since there was a partial isomorphism between u1
and u2, Eloïse only needs the new objects to agree on their sign.

Suppose instead that Abelard decides to relocate the game. If he decides to move
the game in both models back to w, since ai is positive iff bi is positive, we will have
R1,w,w, a » R2,w,w, b. (Likewise, if Abelard chooses to relocate to w in one model
but lets Eloïse choose the other new location, she should still choose w for the reason
above.) If he decides to relocate to some vS where S ‰ H in, say, R1, let T be any
set with the same cardinality as S such that ai P S iff bi P T . Since there are only
finitely many ais, there will always be such a T . Eloïse can choose to relocate to vT ,
and again, since ai is positive iff bi is positive, R1,w, vS , a » R2,w, vT , b. Likewise if
Abelard chooses to relocate to some vS in R2.

The tricky part is determining what to do when Abelard decides to relocate to
vH in R2. But since there are only finitely many ais, Eloïse can just choose a vS where
S Xtau “ H. Then it will still be the case that R1,w, vS , a » R2,w, vH, b. So no matter
where Abelard decides to relocate, Eloïse can continue the game. ∎
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Notice that the proof fails if we try to add either Π, Ó, or F . It is easy to see this for Π,
since we can express (4) as (2):

◇Πx p@Richpxq Ñ Poorpxqq. (2)

To see where the proof above fails forL1Mp«,@,Πq, consider what happens when Abelard
decides to move from u2 to vH in R2. Eloïse will try to match that move in R1 by moving
from u1 to some vS where S X tau “ H. But now, because of Π, Abelard is free to pick
any object in S (and hence not in δ1pvS q), forcing Eloïse to match it with an object in δ2pvHq

(since δ2pvHq “ D2 “ Z), and hence violating (Atomic).
As for Ó and F , the models above disagree on both of these formulas:

Dx pRichpxq ^◇Ó pPoorpxq ^◻@y @Epyqqq (8)
Dx pRichpxq ^ xF y @ pPoorpxq ^◻@y @Epyqqq . (9)

In particular, R2,w,w ( p8q and R2,w,w ( p9q (take vH to be the world we shift to by
◇Ó or xF y @), but R1,w,w * p8q and R1,w,w * p9q. While this does not show that (4)
can be expressed as an L1Mp«,@, Ó,F q-formula, it does show R1 and R2 cannot be used to
settle the matter. Using modified models, however, it is possible to settle the matter in the
negative: (4) is not even UD-expressible in L1Mp«,@, Ó,F q (see §C).23

As a final example, we will show that even L1Mp«,@,Πq cannot express (NR), which
is formalized as (5):

@s pRps˚, sq Ñ Dt pRps, tq ^ @x pRichpx; sq Ñ Poorpx; tqqqq. (5)

Consider two models N1 “ xW1,R1, F1,D1, δ1, I1y and N2 “ xW2,R2, F2,D2, δ2, I2y. Again,
D1 “ D2 “ Z and the accessibility relations are universal. However, now all of Z exists at
every world in either model. Our actual world is z, an egalitarian world where no integer
is either rich or poor. For every finite set S Ď N and finite set T Ď N´, there is a world wT

S
where all the integers in pN´S qYT are rich, while all the integers in pN´ ´T qYS are poor
(so our old w is now just wH

H). And for every nonempty finite set S Ď N, and every finite set
T Ď N´, there is a world vT

S like before, where the rich and poor are flipped with respect
to wT

S . The only difference between N1 and N2 is the presence of worlds of the form vT
H in

N2. See Figure 4 for a picture.24
N1, z, z andN2, z, z both agree that (4) is true, since nothing in z is rich. But they disagree

on whether (5) is true; without the presence of vT
H, there is no world where everyone rich

in wH
H (i.e., N) is poor. Thus, N1 * p5qrzs but N2 ( p5qrzs. Furthermore:

Proposition 4.4 (Inexpressibility of (NR)). N1, z, z Ô«,@,Π N2, z, z. But N2 ( p5qrzs

while N1 * p5qrzs. Hence, (5) is not expressible in L1Mp«,@,Πq.

23I claimed in Kocurek [2015, p. 215] that the proof of Proposition 4.3 extends to L1Mp«,@, Ó,F q. This
needs qualification. We can obtain a quick proof that (4) is not expressible inL1Mp«,@, Ó,F q by restricting the
accessibility relations in R1 and R2; but as §C reveals, the proof of UD-inexpressibility is more challenging.

24I claimed to prove this in Kocurek [2015, pp. 215–216] using models like the ones presented here, except
with T “ H for all worlds. However, my proof was incorrect, since those models are distinguishable by the
L1M-formula◇ rDx Richpxq ^ @x @y pRichpxq ^ Richpyq Ñ ◻pRichpxq Ø Richpyqqqs.
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Figure 4: L1Mp«,@,Πq-bisimilar models disagreeing on (NR).

Proof (Sketch): Our game starts at N1, z, z and N2, z, z. We will describe a winning
strategy for Eloïse such that at every stage of the game xz, u1, a; z, u2, by, not only do
we have N1, z, u1, a » N2, u2, b, but also we have u1 “ z iff u2 “ z, and we have
u1 “ wT1

S 1
for some S 1 and T1 iff u2 “ wT2

S 2
for some S 2 and T2. Clearly this holds for

the initial stage xz, z; z, zy. So suppose xz, u1, a; z, u2, by is such a stage.
Because for each world u and each k P t1, 2u, IkpRich, uq and IkpPoor, uq are empty

or infinite, the back-and-forth step is easy. So suppose Abelard decides to relocate
the game in N1. If he relocates to z, then Eloïse should also just relocate to z in
N1. Suppose now Abelard decides to relocate to some wT1

S 1
in N1. Define S 2 B

␣

bi P N
ˇ

ˇ ai P I1pPoor,wT1
S 1

q
(

and T2 B
␣

bi P N´
ˇ

ˇ ai P I1pRich,wT1
S 1

q
(

. Then one can
check thatN1, z,w

T1
S 1
, a » N2, z,w

T2
S 2
, b. For instance, suppose ai P I1pRich,wT1

S 1
q. Either

bi P N or bi P N´. If bi P N, then bi R S 2, so bi P I2pRich,wT2
S 2

q. If bi P N´, then
bi P T2, so bi P I2pRich,wT2

S 2
q. Likewise, if ai P I1pPoor,wT1

S 1
q, then bi P I2pPoor,wT2

S 2
q.

The same strategy works if Abelard chooses to relocate to some vT1
S 1

in N1. It also
works if Abelard decides to relocate in N2, except when he chooses vT2

S 2
where the

corresponding S 1 as defined above would be empty. In that case, for no ai P N is
bi P I2pRich, vT2

S 2
q. So Eloïse can choose S 1 to be any nonempty subset of N ´ tau. ∎
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Once again, however, this inexpressibility proof does not extend to languages with Ó,
since we can express (5) as:

◻Ó◇Πx p@Richpxq Ñ Poorpxqq . (10)

Likewise, if we restrict to the class of models where R “ F, we can express (5) with:

F@◇Πx p@Richpxq Ñ Poorpxqq . (11)

§5 Generalizations
In the previous section, we saw a number of examples demonstrating how bisimulations
can be used to prove inexpressibility results for a variety of two-dimensional logics. In
this section, we turn to some more general results regarding the expressive power of two-
dimensional modal languages and beyond.

First, given that sentences like (E), (R), and (NR) are expressible in some languages but
not others, it is natural to ask what exactly the relative expressive power of all these various
languages are. For instance, combining the results in §4, we know that L1Mp«q ă L1Mp«

,@q ă L1Mp«,@,Πq. But how do languages like L1Mp«,@, Óq and L1Mp«,@,F q compare?
Is one stronger than the other? What if we add a possibilist quantifier to one or the other?

Using bisimulation techniques like the ones in §4, we can mostly settle these questions
for the two-dimensional languages discussed in this paper (though in what follows, I have
excluded languages that include @@). The inclusions relative to the class of all models can
be diagrammed as in Figure 5 (for a proof of the accuracy of the diagram, see §D). The
diagram is still accurate relative to D. Relative to U, adding Ó or F without @ present is
redundant. Moreover, L1MpE,@, Ó,Πq ”U L1MpE,@,F ,Πq ”U L1MpE,@, Ó,F ,Πq.25 Rel-
ative to UD, we will have more inclusions. For instance, while L1MpΠq ęU L1Mp@, Óq

and L1MpΠq ęD L1Mp@, Óq, we do have L1MpΠq ďUD L1Mp@, Óq, using the translation
Πxφ B Ó◻@x @φ. Similarly, L1MpΠq ďUD L1Mp@,F q. However, there are still limitations:
L1MpΠq ęUD L1Mp«,@q and L1Mp@,Πq ęUD L1Mp«,@, Ó,F q. For more details, see §D.

Second, all of these inexpressibility results carry over to temporal logic. In temporal
logic, one also includes a backward-looking operator ◻´1, in addition to ◻, with the fol-
lowing semantic clause (where R´1 “ txv,wy | xw, vy P Ru):

M,w, v, g , ◻´1φ ô @v1 P R´1rvs : M,w, v1, g , φ.

Usually,◻ and◻´1 are written respectively as G and H (for “it is always going to be” and
“it has always been”), @ is written as N (for “now”), and Ó is written as T (for “then”). The
notion of a bisimulation can easily be generalized to temporal logic by including Zig-Zag
clauses for both R and R´1 (which are often written respectively as ă and ą).

All of the sentences considered in this paper have natural temporal analogues. Here are
a few variations on some of the sentences we have been considering (where R is replaced
by ă):

25The exact relation between L1Mp@,F q, L1Mp@, Óq, and L1Mp@, Ó,F q relative to U is an open question. In
particular, it is unknown whether L1Mp@, Óq ăU L1Mp@,F q or even L1Mp@, Ó,F q ”U L1Mp@,F q. Figure 11 in
§D summarizes the remaining inclusions relative to U.
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L1M ” L1MpÓq

L1MpF q L1Mp@q

L1Mp@,F q L1Mp@, ÓqL1MpÓ,F q

L1Mp@, Ó,F q

L1

L1pEq

L1p«q

L2

L2pEq

L2p«q

L1pΠq

L1pE,Πq

L1p«,Πq

L2pΠq

L2pE,Πq

L2p«,Πq

Figure 5: The (D-)expressive hierarchy for two-dimensional languages between L1M and
L1Mp«,@, Ó,F ,Πq. Arrows represent strict increase in expressive power. If there is an
upward path fromL1 toL2 in the diagram on the left, then the inclusions betweenL1,L2,
and their extensions with E, «, or Π are represented in the right diagram.

(FE) There will be things other than there are now.

Dt ą s˚ pEpx; tq ^ ¬Epx; s˚qq (12)

(PR) It was the case that everyone now rich was poor.

Dt ă s˚ @x pRichpx; s˚q Ñ Poorpx; tqq (13)

(FPR) Henceforth, everyone who is rich will have once been poor.

@t ą s˚ Dt1 ă t @x pRichpx; tq Ñ Poorpx; t1qq (14)

All of our models in §4 have universal accessibility relations. However, allowing ă to be
universal would be too permissive in the context of temporal logic (there would be no
difference between future and past!). Often, ă is required to be at least a strict partial
order (i.e., irreflexive, asymmetric, and transitive), thereby excluding models where it is
universal. Thus, none of the results in §4 immediately carry over to temporal logic.

Fortunately, we can still piggyback on these inexpressibility results with the following
trick. SupposeM,w,w ÔS 1,...,S n N , v, v where the accessibility relations ofM and N are
universal. Assume for simplicity that WM and WN are countable. Let fM : N Ñ WM be a
surjection such that fMp0q “ w (and likewise for fN ). Define a new modelMZˆN where
WMZˆN B Z ˆ WM, RMZˆN “ FMZˆN B txxi, f pnqy , x j, f pmqyy | i ă j or pi “ j and n ă mqu,
DMZˆN B DM, δMZˆNpxi, f pnqyq B δMp f pnqq, and IMZˆNpP, xi, f pnqyq B IMpP, f pnqq. That is,
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each i P Z contains a copy ofM, and the integer-world pairs are ordered lexicographically.
Define NZˆN similarly from N using fN .

It is straightforward to check thatMZˆN, x0,wy , x0,wy Ô◻´1,S 1,...,S n
NZˆN, x0, vy , x0, vy.

For instance, suppose we are playing the L1Mp◻´1, S 1, . . . , S nq back-and-forth game with
MZˆN andNZˆN, and we are currently at stage xxi1, u1y , xi2, u2y , a; xi11, u

1
1y , xi12, u

1
2y , by. Then

whenever Abelard makes a move, Eloïse need only consult the L1MpS 1, . . . , S nq back-and-
forth withM andN , and see how she would respond at stage xu1, u2, a; u1

1, u
1
2, by. In particu-

lar, if Abelard chooses to relocate the game inMZˆN to xi3, u3y where xi3, u3y ą xi2, u2y, then
Eloïse can pick whatever u1

3 she would have chosen had Abelard chose u3 in the back-and-
forth game withM and N , and then she can relocate the game in NZˆN to xi13, u

1
3y where

xi13, u
1
3y ą xi12, u

1
2y (she will always be able to find one, since there are infinitely many copies

of N after i12). The same strategy applies if Abelard picks xi3, u3y with xi3, u3y ă xi2, u2y.
Thus, our results in §4 can be extended to temporal logic.26

Finally, it seems as though two-dimensions is not enough to overcome the kind of ex-
pressive limitations discussed in this paper in full generality. Recall that while (NR) is not
expressible as an L1Mp«,@,Πq-formula, it is expressible as an L1Mp«,@, Ó,Πq-formula.
However, more complicated sentences can be constructed that reveal the expressive limi-
tations of evenL1Mp«,@, Ó,Πq. The most natural examples use temporal modalities or mix
modalities. For instance, here is a temporal example from Cresswell [1990, p. 29]:

(H) Once, everyone now alive who was not then miserable would eventually be happy.

To formalize this, it seems that we need to store two reference times, not just one. In LTS,
we would formalize (H) as follows:

Dt ă s˚ Dt1 ą t @x ppAlivepx; s˚q ^ ¬Miserable(x;t)q Ñ Happypx; t1qq . (15)

We can also get examples with metaphysical modality, although the more powerful the
language is, the more contrived the examples have to be:

(RC) There could have been a brave man such that everyone who was poor but kind in
reality necessarily received money from that man.

The problem is that we need to be able to go back to both the actual world and the first
world we shifted to while we are at the second world we shifted to; but we can only keep
track of one reference world at a time. It has been noted in the literature that this point
seems to generalize to higher-dimensional languages.27 One gets the feeling that for any
n, we can concoct aLTS-formula that requires keeping track of pn ` 1q-many worlds in our
points of evaluation. But no proof of this claim has been offered in the literature.28

26Though our partial order was linear and discrete, this was not crucial to the construction. We could have,
for instance, mapped each state inM to a rational in the interval r0, 1q, and have obtained a dense linear order.
Alternatively, via tree unraveling, we could have obtained a branching structure.

27See, e.g., Vlach [1973, p. 183–185], Needham [1975, pp. 73–74], van Benthem [1977, p. 418], Forbes [1989,
p. 87], and Cresswell [1990, pp. 29–30].

28Several conjectures have been made about how to construct such formulas. For instance, Needham [1975,
pp. 73–74] gives a sentence he claims is not expressible in L1Mp◻´1,@, Ó,Πq; but van Benthem [1977, p. 417]
shows it is. van Benthem then gives a genuine example of a temporal LTS-formula that is not expressible
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Using the power of bisimulations, we can actually verify this claim. I will conclude
by explaining how to generate further inexpressibility results for higher-dimensional lan-
guages. We will only explicitly prove that a certain three-dimensional language is not
expressible in any two-dimensional language. Hopefully, it will be clear how the method
can be schematized to show that some pn ` 1q-dimensional languages are not expressible
in any n-dimensional language.

First, an n-dimensional model is a tuple of the form M “ xW,R,R1, . . . ,Rn´1,D, δ, Iy

where each Ri Ď W ˆW, and otherwise everything is as before. For instance, the models we
have been working with in this paper have all been 2-dimensional models (where F “ R1).
Second, for each k ě 1, we will introduce operators ◻k, @k, and Ók, which we might add
to L1M. We will define L1M

1 B L1M and L1M
n`1 B L1Mp◻1, . . . ,◻n,@1, . . . ,@n, Ó1, . . . , Ónq.

Third, where σ “ xw1, . . . ,wny is a sequence of worlds, and where 1 ď k ď n, let σk
v be the

result of replacing wk in σwith v. Finally, satisfaction forL1M
n`1 will be relativized to pn`1q-

dimensional models, as well as a sequence of n-many worlds σ “ xw1, . . . ,wny, a world v,
and a variable assignment g P VApMq, with the semantic clauses for the new operators
stated below for 1 ď k ď n:

M, σ, v, g , ◻kφ ô @u P Rkrwks : M, σk
u, v, g , φ

M, σ, v, g , @kφ ô M, σ,wk, g , φ

M, σ, v, g , Ókφ ô M, σk
v, v, g , φ.

Thus, F , @, and Ó are◻1, @1, and Ó1 respectively. Since L1M
1 “ L1M and L1M

2 is essentially
L1Mp@, Ó,F q, it makes sense to call L1M

n with this semantics an n-dimensional language.
Generalizing the definition of a bisimulation to L1M

n is straightforward.
Using models similar to N1 and N2 from Figure 4, we can show that L1M

n`1 is not in-
cluded in L1M

n p«,Πq. We have already shown with Proposition 4.4 that L1M
2 is not in-

cluded inL1M
1 p«,Πq (or even inL1M

1 p«,@1,Πq), since◻Ó1◇@x p@1Richpxq Ñ Poorpxqq dis-
tinguishes N1, z, z and N2, z, z, even though N1, z, z Ô«,@1,Π N2, z, z. We will show that the
following L1M

3 -formula is not expressible in L1M
2 p«,Πq:29

◻Ó1◻Ó2◇@x pp@1P1pxq ^ @2P2pxqq Ñ P3pxqq . (16)

in L1Mp◻´1,@, Ó,Πq. However, it should be noted that even though F operators were not the focus of van
Benthem [1977], the sentence he gives is expressible inL1Mp@,F´1,Πq, which is still two-dimensional. Forbes
[1989, p. 89] also gives a schema that was supposed to show that pn ´1q-dimensional logic is not as expressive
as n-dimensional logic. But as footnote 29 explains, the example is not correct either. Cresswell [1990, p. 30]
suggests one can generate such sentences from (H) since, reading the conditional in (15) as a disjunction,
“disjunctions can be extended with no upper limit.”

29 Forbes [1989, p. 87] gives a purported example of an n-dimensional formula not expressible as an pn `1q-
dimensional formulas. (Following Forbes, we restrict attention to models whose accessibility relations are
universal.) Given a modelM, let us say a sequence w1, . . . ,wn P WM is an n-chain if δMpwiq Ă δMpwi`1q for
1 ď i ă n. Forbes [1989, p. 89] says “it is a very probable conjecture that ‘there is an n-chain of worlds’
cannot be expressed in [L1M

n´1p«q], so that the hierarchy of modal languages is strictly increasing in expres-
sive power. . . ” Forbes also notes that L1M

n´1p«,Πq can express “there is an n-chain of worlds”, but claims
that it cannot express “there is an n ` 1-chain of worlds”. However, the conjecture is false. Define θi,k B
@i@x @kEpxq ^ @kDx @i ¬Epxq. Then the claim that there is a 4-chain can be expressed as an L1M

3 p«q-formula:
◇1◇2 pθ1,2 ^◇1 pθ2,1 ^◇2θ1,2qq. Likewise for n ą 4. Also, let χ B Πx p@1Epxq Ñ Epxqq ^ Dx @1 ¬Epxq and
let η B @x @1Epxq ^ Σx p@1Epxq ^ ¬Epxqq. Then the claim that there is a 4-chain can be expressed as an
L1M

2 p«,Πq-formula: ◇1◇ pχ ^◇1 pη ^◇χqq. Again, this generalizes to n-chains where n ą 4.
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The proof that ◻Ó1 ¨ ¨ ¨◻Ón◇@x p
Źn

i“1 @iPipxq Ñ Pn`1pxqq is not expressible in L1M
n p«,Πq

is a straightforward generalization of the one below.
First, we describe our models N3 and N4. These models have been summarized in

Figure 6. All of the accessibility relations will be universal, and N3 and N4 will both be
constant domain models (so the local domain of every world is the global domain). Let N1,
N2, N3, and N4 be disjoint copies of N. In both models, there will be a unique world z where
IkpP1, zq “ IkpP2, zq “ IkpP3, zq “ H for k P t3, 4u. There will be three types of worlds: α-
worlds, β-worlds, and γ-worlds. Each type of world will be uniquely specified by four sets
S 1, S 2, S 3, and S 4, where S k Ď Nk and |S k| ă ℵ0 for k P t1, 2, 3, 4u. Where η P tα, β, γu, we
will denote the worlds as ηS 1,S 2,S 3,S 4 . Each of S 1, S 2, S 3, and S 4 is generally allowed to be
empty, but in N3, only γ-worlds where S 1 ‰ H are allowed. For each k P t3, 4u and each
i P t1, 2, 3u, IkpPi, ηS 1,S 2,S 3,S 4q “ H with the following exceptions:

• IkpP1, αS 1,S 2,S 3,S 4q “ pN1 ´ S 1q Y pN2 ´ S 2q Y S 3 Y S 4

• IkpP2, βS 1,S 2,S 3,S 4q “ pN1 ´ S 1q Y pN3 ´ S 3q Y S 2 Y S 4

• IkpP3, γS 1,S 2,S 3,S 4q “ pN1 ´ S 1q Y pN4 ´ S 4q Y S 2 Y S 3.

pN1 ´ S 1q Y pN2 ´ S 2q Y S 3 Y S 4P1

pN3 ´ S 3q Y pN4 ´ S 4q Y S 1 Y S 2

αS 1,S 2,S 3,S 4

pN1 ´ S 1q Y pN3 ´ S 3q Y S 2 Y S 4P2

pN2 ´ S 2q Y pN4 ´ S 4q Y S 1 Y S 3

βS 1,S 2,S 3,S 4

pN1 ´ S 1q Y pN4 ´ S 4q Y S 2 Y S 3P3

pN2 ´ S 2q Y pN3 ´ S 3q Y S 1 Y S 4

γS 1,S 2,S 3,S 4

N1 Y N2 Y N3 Y N4

z

Figure 6: Summary of N3 and N4. For each k P t1, 2, 3, 4u, we have that S k Ď Nk and
|S k| ă ℵ0. For N3, there are no worlds of the form γH,S 2,S 3,S 4 .

We will start by explaining why N3, xz, zy , z . p16q while N4, xz, zy , z , p16q. First, to
explain whyN3, xz, zy , z . p16q, it suffices to note the following (where α and β below have
set S 1 “ S 2 “ S 3 “ S 4 “ H, and w is any world):

N3, xα, βy ,w . ◇@x pp@1P1pxq ^ @2P2pxqq Ñ P3pxqq .

This is simply because IpP1, αq X IpP2, βq “ N, but no γ-world has all of N in its interpreta-
tion of P3. Second, to explain why N4, xz, zy , z , p16q, consider the following formula:

◇@x pp@1P1pxq ^ @2P2pxqq Ñ P3pxqq . (17)
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Notice that N4, xw, vy , u , p17q holds vacuously unless w is an α-world and v is a β-world.
So suppose w “ αS 1,S 2,S 3,S 4 and v “ βT1,T2,T3,T4 . Then:

I4pP1,wq X I4pP2, vq “ pN1 ´ pS 1 Y T1qq Y pT2 ´ S 2q Y pS 3 ´ T3q Y pS 4 X T4q.

Now pick u “ γpS 1YT1q,pT2´S 2q,pS 3´T3q,S 1
4
, where S 1

4 is disjoint from S 4 X T4. (We can always
find such a γ since S 1 Y T1 is allowed to be empty.) Then it is easy to see thatN4, xw, vy , u ,

@x pp@1P1pxq ^ @2P2pxqq Ñ P3pxqq. Thus, N3, xz, zy , z and N4, xz, zy , z disagree on (16).
Now, in what follows, let us say that a 2D-partial isomorphism betweenM, xw, zy , v, a

and N , xw1, z1y , v1, b is a map ρ such that ρ is a partial isomorphism betweenM,w, v, a and
N ,w1, v1, b, and also a partial isomorphism between M,w,w, a and N ,w1,w1, b. In other
words, 2D-partial isomorphisms must also satisfy (Predicate) and (Existence) at w and w1.
We will write »2D in place of » for 2D-partial isomorphisms. It is easy to verify that 2D-
partial isomorphism allows for Eloïse to continue the L1M

2 p«q-bisimulation game.
Let us write M,w, z, v, a Ô2 N ,w1, z1, v1, b to mean that M,w, z, u, a and N ,w1, z1, u1, b

are L1M
2 -bisimilar (I am dropping the angle brackets). Note Ô2 is just L1Mp@1, Ó1,◻1q “

L1Mp@, Ó,F q-bisimilarity, with an extra argument place for worlds in the middle; no clause
in this notion of bisimilarity can do anything to or with the z and z1 worlds. The conventions
from before regarding adding additional operators, quantifiers, etc. all apply.

Theorem 5.1 (Higher-Dimensional Inexpressibility). N3, z, z, z Ô2
«,@2,Π

N4, z, z, z.

Proof: Clearly, z, z, z »2D z, z, z. Now, suppose w, z, v, a »2D w1, z, v1, b, where:
• w “ z iff w1 “ z (likewise for v and v1)
• w is an α/β/γ-world iff w1 is an α/β/γ-world (likewise for v and v1)
• w “ v iff w1 “ v1.

Using these assumptions, we will show that no matter what move Abelard makes,
Eloïse can match his move so as to preserve these assumptions.

First, observe that no matter what worlds w and v are, for any i, j P t1, 2, 3u, all
of the following sets are either empty or infinite (where k P t3, 4u):

IkpPi,wq X IkpP j, vq IkpPi,wq X IkpP j, vq

IkpPi,wq X IkpP j, vq IkpPi,wq X IkpP j, vq.

Thus, if Abelard picks a new a P δ3puq, then no matter what predicates it satisfies in
w or v, Eloïse will have infinitely many new b P δ4pu1q to choose from which satisfy
the same predicates in w1 and v1. Likewise if Abelard picks a new b P δ4pu1q.

Next, suppose Abelard decides to relocate the game in N3. Since this is the
L1M

2 p«,Πq-bisimulation game, he can either choose to replace w with another world,
or v with another world (there are no clauses for reseting z). Clearly if he replaces
one of these with z, Eloïse should match his move by replacing the corresponding
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world with z. If he replaces w with v, Eloïse should replace w1 with v1. Likewise if he
replaces v with w. Suppose WLOG that he decides to replace v with a new α-world
u “ αS 1,S 2,S 3,S 4 . Define:

T1 B tbi P N1 | ai R I3pP1, uqu T3 B tbi P N3 | ai P I3pP1, uqu

T2 B tbi P N2 | ai R I3pP1, uqu T4 B tbi P N4 | ai P I3pP1, uqu .

Define u1 “ αT1,T2,T3,T4 . It is easy to check that ai P I3pP1, uq iff bi P I4pP1, u1q. (Sup-
pose ai P I3pP1, uq, and reason by cases depending on whichNk contains bi. Likewise
with ai R I3pP1, uq.) The other cases are symmetric (for both Zig and Zag), except
if Abelard decides to replace v1 with a γ-world where the corresponding S 1 we de-
fine would be empty. In that case, define the other sets as before, and pick a new
c P N1 ´ tau and set S 1 “ tcu. ∎

§6 Conclusion
As we have seen, there are a number of English modal claims that seem to resist regimenta-
tion in first-order modal logic, even if we add two-dimensional operators. Proofs of these
claims in the literature are often quite complicated. But as we have shown, they can be
simplified by first regimenting these English sentences as formulas in an extensional two-
sorted language and then constructing bisimilar models that disagree on these extensional
formulas. We illustrated this technique by showing that (E) is not expressible in L1Mp«q,
that (R) is not expressible in L1Mp«,@q, and that (NR) is not expressible in L1Mp«,@,Πq.
We then classified the relative expressive power of the extensions of L1M with operators
like @, Ó, and F , and finally showed how these inexpressibility results generalize to tem-
poral languages and to higher-dimensional languages.

There are still a number of questions about the expressivity of extensions of first-order
modal logic that have yet to be resolved. For one thing, we have yet to complete the clas-
sification of the expressive power of these languages relative to U and UD, and one might
also wonder whether these results hold in other kinds of models, such as the class of mod-
els with finite global domains.30 More broadly, there is still a question about whether we
can formally characterize sentences like (E), (R), and (NR).31 Finally, there is still much to
be learned about even more powerful extensions of first-order modal logic. For instance,
the results in §5 suggest that the key to overcoming all of these expressive limitations is
to move to a hybrid language, or some weaker Vlachian languages.32 Bisimulation tech-
niques can also be used to characterize the expressive power of first-order Vlachian logics

30A theorem of Yanovich [2015, pp. 85–86] shows that one will not generally be able to use the bisimulation
technique proposed in this paper to establish inexpressibility over the class of models with finite domains. I
suspect one could still establish such results, however, by constructing sequences of pairs of finite models that
were n-bisimilar for each n P N. But working out the details must be left for future work.

31See Kocurek [2016] for one such syntactic characterization.
32See Vlach [1973]; Areces et al. [1999]; Areces and ten Cate [2007]; Fritz [2012]; Yanovich [2015]; Kocurek

[2016].
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and hybrid logics.33 But there is still much to uncover about the full expressive landscape
for these languages and their extensions.
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§A van Benthem’s Characterization Theorem
In this appendix, we prove Theorem 3.5. We essentially follow the proof of the correspond-
ing theorem for propositional modal logic in Blackburn et al. [2001, Chp. 2.6]. The crucial
change is with the definition of a set of formulas being satisfiable.

Definition A.1 (Satisfiability). Let z be some new variables not in VAR, and let Lpzq

be the result of extending Lwith z. Let Γpx, zq be a set of Lpzq-formulas whose only
variables not among z are x. LetM be a model, and X Ď W2, and let b P D.
• Γ is Σ{D{D@-satisfiable in X over b (with respect toM) if there is a xw, vy P X

and some a P D{δpvq{δpwq such thatM,w, v , Γra, bs.
• Γ is finitely Σ{D{D@-satisfiable in X over b (with respect toM) if every finite

subset of Γ is Σ{D{D@-satisfiable in X over b (with respect toM).

Note that if the only free variables in Γ are among z, then Γ is (finitely) Σ-satisfiable in X
over b iff it is (finitely) D-satisfiable in X over b iff it is (finitely) D@-satisfiable in X over b.
We will just use the term “(finitely) satisfiable” when the distinction does not matter.

Definition A.2 (Modal Saturation). Assume F , @@, and Π are not among S 1, . . . , S n.
A modelM is L1MpS 1, . . . , S nq-saturated if for all w, v P W, all b P D, and all sets
Γpx, zq of L1MpS 1, . . . , S n, zq-formulas:
(a) if Γ is finitely D-satisfiable in twu ˆ Rrvs over b (with respect toM), then it is

D-satisfiable in twu ˆ Rrvs over b;

(b) if Γ is finitely D-satisfiable in txw, vyu over b (with respect toM), then it is D-
satisfiable in txw, vyu over b.

If F is among S 1, . . . , S n, we just add the following clause:

(c) if Γ is finitely D-satisfiable in Frws ˆ tvu over b (with respect toM), then it is
D-satisfiable in Frws ˆ tvu over b.

If Π{@@ is among S 1, . . . , S n, add the clauses above but with D replaced by Σ{D@.

33For examples, see Fritz [2012]; Yanovich [2015].
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Lemma A.3 (Modal Saturation implies the Hennessy-Milner Property). SupposeM and
N are L1MpS 1, . . . , S nq-saturated. Then ”S 1,...,S n is an L1MpS 1, . . . , S nq-bisimulation
between M and N . Hence, if M,w, v, a ”S 1,...,S n N ,w1, v1, b, then it follows that
M,w, v, a ÔS 1,...,S n N ,w1, v1, b.

Proof: Suppose M,w, v, a ”S 1,...,S n N ,w1, v1, b. Clearly (Atomic) is satisfied (and
likewise for (Ex) and (Eq) if E or « are among S 1, . . . , S n).
Zig-Zag. Let u P RMrvs. Define Γpzq B tφpzq |M,w, u , φrasu. Let ∆ Ď Γ be finite

and nonempty. Then since u P RMrvs,M,w, v , ◇
Ź

∆ras. Since by hypothesis
M,w, v, a ”S 1,...,S n N ,w1, v1, b (and since for each ψ P ∆, we could replace z with
fresh new variables in VAR), it follows that N ,w1, v1 , ◇

Ź

∆rbs. Hence, ∆
is satisfiable in tw1u ˆ RN rv1s over b. By L1MpS 1, . . . , S nq-saturation, there is
a u1 P RN rv1s such that M,w, u1 , Γrbs. Thus, M,w, u, a ”S 1,...,S n N ,w1, u1, b.
Likewise for the Zag clause. ✓

Back-Forth. Let a1 P δMpvq. Define Γpx, zq B tφpx, zq |M,w, v , φra1, asu. Let ∆ Ď Γ
be finite and nonempty. ThenM,w, v , Dx

Ź

∆px, zqras. Since by hypothesis
M,w, v, a ”S 1,...,S n N ,w1, v1, b, it follows thatN ,w1, v1 , Dx

Ź

∆px, zqrbs. Hence,
∆ is D-satisfiable in txw1, v1yu over b with respect to N . By L1MpS 1, . . . , S nq-
saturation, Γ itself is D-satisfiable in txw1, v1yu over b with respect to N . So
there is a b1 P δMpv1q such that N ,w1, v1 , Γrb1, bs. Thus,M,w, v, a, a1 ”S 1,...,S n

N ,w1, v1, b, b1. Likewise for the Forth clause. ✓

The F -Zig-Zag-clauses are just like the Zig-Zag clause above, and the other
quantifier Back-Forth clauses are just like the Back-Forth clauses above. The Act
and Diag clauses are taken care of automatically by the fact thatM,w, v, a ”S 1,...,S n

N ,w1, v1, b (assuming @/Ó is among S 1, . . . , S n). ∎

Definition A.4 (Realization). Let LTSpz, tq be LTS extended with z R VAR and t R

SVAR. Let b P D and v P W where |b| “ |z| and |v| “ |t|. LetM be a model, and let
Γpx, z; s, tq be a set ofLTSpz, tq-formulas whose only free variables are among x, z, s, t.
• Γ is realized over b and v (with respect toM) if there are some a P D and u P W

such thatM ( Γra, b; u, vs. We call b and v parameters.
• Γ is finitely realized over b and v (with respect toM) if every finite subset of

Γ is realized over b and v (with respect toM).

Definition A.5 (Saturation). We will sayM is countably saturated if for every finite
b P D, every finite v P W, and every set Γ of LTSpz, tq-formulas (where |b| “ |z| and
|v| “ |t|) that is finitely realized over b and v, Γ is also realized over b and v.
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Lemma A.6 (Countable Saturation Implies Modal Saturation). IfM is countably satu-
rated, then it is L-saturated.

Proof: LetM be a countably saturated model. Suppose a setΓpx, zq ofLpzq-formulas
is finitely D-satisfiable in twu ˆ Rrvs over b. Consider the set:

Γ˚px, z; s, r, tq B STs,t pΓq Y tRpr, tqu Y tEpxi; tq | xi P xu .

Let ∆ Ď Γ be finite and nonempty. Since ∆ is D-satisfiable in twu ˆ Rrvs, there is a
u P Rrvs and some a P δpuq such thatM,w, u , ∆ra, bs. Let:

∆˚ B STs,t p∆q Y tRpr, tqu Y tEpxi; tq | xi P xu .

Then M ( ∆˚ra, b;w, v, us. But ∆˚ Ď Γ˚ is finite. So every finite subset of Γ˚ is
realized over b, w, v, and u. By countable saturation, there are some a P D and u P W
such thatM ( Γ˚ra, b;w, v, us. But then u P Rrvs, a P δpuq, andM,w, u , Γra, bs. So
Γ is D-satisfiable in twu ˆ Rrvs. Likewise for D-satisfiability in txw, vyu, except you
define:

Γ˚px, z; s, tq B tSTs,t pφq |φ P Γu Y tEpxi; tq | xi P xu .

Similarly for the other kinds of satisfiability. ∎

It follows from Lemma A.3 and Lemma A.6 that:

Corollary A.7 (Countable Saturation implies Hennessy-Miller Property). If M and N
are countably saturated, and it M,w, v, a ”S 1,...,S n N ,w1, v1, b, then it follows that
M,w, v, a ÔS 1,...,S n N ,w1, v1, b.

Definition A.8 (Ultraproducts). Let N ‰ H. An ultrafilter over N is a set U Ď ℘ pNq

where U is closed under supersets and finite intersections, H R U, and for all S P

℘ pNq, either S P U or S P U. Let U be an ultrafilter over N. For each i P N, let Wi ‰ H.
Then

ś

iPN Wi is the set of functions f : N Ñ
Ť

iPN Wi where f piq P Wi. We will say
f „U f 1 if ti P N | f piq “ f 1piqu P U. Define r f sU “ t f 1 | f „U f 1 u. Finally, we will
define the ultraproduct of Wi modulo U as the set

ś

U Wi B tr f sU | f P
ś

iPN Wi u.
We will drop the subscript U when the ultrafilter in question is obvious from the
context. An ultrapower is an ultraproduct where Wi “ W for all i P N, which we
may write as

ś

U W.

Definition A.9 (Ultrapowers of Models). Let M “ xW,R, F,D, δ, Iy be a model. The
ultrapower model ofM modulo U is the model

ś

UM defined as follows:
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• WU B
ś

U W

• RUpr f1s , r f2sq iff ti P N | Rp f1piq, f2piqqu P U

• FUpr f1s , r f2sq iff ti P N | Fp f1piq, f2piqqu P U

• DU B
ś

U D

• ros P δUpr f sq iff ti P N | opiq P δp f piqqu P U

• xro1s , . . . , ronsy P IUpP, r f sq iff ti P N | xo1piq, . . . , onpiqy P IpP, f piqqu P U.

It is a routine exercise to show that these definitions are well-defined, i.e., they do not
depend on the representative of the equivalence class used in their statement.

Theorem A.10 (Łoś’s Theorem). The following are equivalent:
(a)

ś

UM ( αrro1s , . . . , ronss.

(b) ti P N |M ( αro1piq, . . . , onpiqsu P U.

This can be proven by induction.34 Now, define fw : i ÞÑ w and oa : i ÞÑ a. If g is a
variable assignment over M, define gU : x ÞÑ ogpxq. Let the diagonal map be the map d
fromM to

ś

UM such that dpwq “ fw and dpaq “ oa. Then it is a straightforward corollary
of Theorem A.10 that the diagonal map is an elementary embedding ofM into

ś

UM.
Say that U is countably incomplete if there is a countable subset of U whose intersection

is not in U. A standard result from model theory shows that if U is countably incomplete,
then

ś

UM is countably saturated.35 The important point, however, is that we can always
find a countably saturated elementary extension ofM (viz.,

ś

UMwhere U is a countably
incomplete ultrafilter). This is all we will need below.

Proof (Theorem 3.5): Let Γ B tSTs,t pφq |α ( STs,t pφqu. It suffices to show (by the
compactness of LTS) that Γ ( α. SupposeM, g ( Γ. Define:

∆ B tSTs,t pφq |M, g ( STs,t pφqu Y tαu .

It is easy to show that ∆ is satisfiable (again by compactness). Let N , h ( ∆. Then
M, gpsq, gptq, gpxq ”S 1,...,S n N , hpsq, hptq, hpxq by the way we defined ∆. Now, by the
results above, there exist elementary extensions e : M ďM1 and f : N ďM1 that are
countably saturated. Since these are elementary embeddings:

M1, epgpsqq, epgptqq, epgpxqq ”S 1,...,S n N 1, f phpsqq, f phptqq, f phpxqq.

By Corollary A.7, since these are countably saturated:

M1, epgpsqq, epgptqq, epgpxqq ÔS 1,...,S n N 1, f phpsqq, f phptqq, f phpxqq.

34See Chang and Keisler [1990, Chp. 4].
35See Bell and Slomson [2006, pp. 222–224].
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Hence, by invariance under bisimulation,M1, g1 ( α (where g1pxq “ epgpxqq. Since
e : M ďM1, it follows thatM, g ( α. ∎

§B Bisimulation Proofs
In this appendix, we give more formal details regarding the bisimulation proofs from §4.
We start with the proof of Proposition 4.2. Before reading, recall the definition of a partial
isomorphism from Definition 4.1, and the definition of the models E1 and E2 (see Figure 2
for a picture). Note thatM,w, v, a » N ,w1, v1, b iff the map ai ÞÑ bi is a partial isomorphism
between them. In particular, for our models E1 and E2, if ai P δ1pv1q iff bi P δ2pv2q and
ai “ a j iff bi “ b j, then E1,wN, v1, a » E2,wN, v2, b, since this means ai ÞÑ bi is a partial
isomorphism. We will make use of this implicitly throughout.

We will define our bisimulation in stages. First, set Z0 “ txwN,wN;wN,wNyu. Next,
suppose we have constructed Zi so that for all xwN, v1, a;wN, v2, by P Zi, |δ1pv1q| “ |δ2pv2q|

and E1,wN, v1, a » E2,wN, v2, b. (Clearly this holds for Z0.) Define the following sets:

ZZZ-fin
i “

$

’

&

’

%

xwN,wS , a;wN,wT , by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(i) Du1, u2 : xwN, u1, a;wN, u2, by P Zi
(ii) S Ď N is finite and nonempty
(iii) T Ď N8 is finite and nonempty
(iv) ai P S iff bi P T (v) |S | “ |T |

,

/

.

/

-

ZZZ-cofin
i “

#

xwN,wN´S , a;wN,wN8´T , by

ˇ

ˇ

ˇ

ˇ

ˇ

(i) Du1, u2 : xwN, u1, a;wN, u2, by P Zi
(ii) S Ď N is finite (iii) T Ď N8 is finite
(iv) ai P S iff bi P T

+

ZBF
i “

#

xwN, u1, a, a;wN, u2, b, by

ˇ

ˇ

ˇ

ˇ

ˇ

(i) xwN, u1, a;wN, u2, by P Zi
(ii) a P δ1pu1q and b P δ2pu2q
(iii) a “ ai iff b “ bi

+

.

Set Zi`1 B Zi Y ZZZ-fin
i Y ZZZ-cofin

i Y ZBF
i .

Lemma B.1 (This Construction Can Continue). If xwN, v1, a;wN, v2, by P Zi`1, then we
have |δ1pv1q| “ |δ2pv2q| and E1,wN, v1, a » E2,wN, v2, b.

Proof: Suppose xwN, v1, a;wN, v2, by P Zi`1. If xwN, v1, a;wN, v2, by P Zi, then this is
obvious. Otherwise, xwN, v1, a;wN, v2, by is either in ZZZ-fin

i , ZZZ-cofin
i , or ZBF

i .
Case 1: ZZZ-fin

i . So v1 “ wS and v2 “ wT for some S and T . By the fact that |S | “ |T |,
|δ1pv1q| “ |δ2pv2q|. And by construction, ai P S iff bi P T , so ai P δ1pv1q iff
bi P δ2pv2q, and thus E1,wN, v1, a » E2,wN, v2, b. ✓

Case 2: ZZZ-cofin
i . Same reasoning, only we know |δ1pv1q| “ |δ2pv2q| “ ℵ0. ✓

Case 3: ZBF
i . We already know |δ1pv1q| “ |δ2pv2q| since this was guaranteed by Zi.

Moreover, both a P δ1pv1q and b P δ2pv2q, so we still meet (Existence). And by
the fact that a “ ai iff b “ bi, we still meet (Equality). ✓ ∎
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Lemma B.1 guarantees we can continue the construction. Finally, define Z B
Ť

iPω Zi.

Proof (Proposition 4.2): Suppose xwN, v1, a;wN, v2, by P Z. Then there is some i such
that xwN, v1, a;wN, v2, by P Zi. By Lemma B.1, E1,wN, v1, a » E2,wN, v2, b, so (Atomic)
and (Eq) (as well as (Ex)) are satisfied.
Zig. Let u1 P W1. Suppose that u1 “ wS for some finite nonempty S Ď N. We want

to show that there is a T Ď N8 such that xwN,wS , a;wN,wT , by P ZZZ-fin
i . List the

elements c1, . . . , cn P S ´ tau. Let d1, . . . , dn be n-many distinct elements from
N8 ´ tbu, and set T “ tbi | ai P S u Y td1, . . . , dnu. Then T Ď N8 is also finite
and nonempty, |S | “ |T |, and ai P S iff bi P T . So xwN,wS , a;wN,wT , by P ZZZ-fin

i .
The case where u1 “ wN´S is essentially the same, except one does not need
|S | “ |T |. ✓

Zag. As above. ✓

Forth. Let a P δ1pv1q. If a “ ai, then we can just pick b “ bi, and just note that
xwN, v1, a, ai;wN, v2, b, biy P ZBF

i . So suppose a is not among a. Since |δ1pv1q| “

|δ2pv2q|, we have that |δ1pv1q ´ tau| “ |δ2pv2q ´ tbu|. And the former is not
empty since a P δ1pv1q ´ tau. So pick any b P δ2pv2q ´ tbu. Then we have that
xwN, v1, a, a;wN, v2, b, by P ZBF

i . ✓

Back. As above. ✓ ∎

Now for the proof of Proposition 4.3. As before, set Z0 “ txw,w;w,wyu. Now suppose
we have constructed Zi and for all xw, u1, a;w, u2, by P Zi,R1,w, u1, a » R2,w, u2, b and u1 “ w
iff u2 “ w. Define the following sets:

ZAct
i “ txw,w, a;w,w, by | Du1, u2 : xw, u1, a;w, u2, by P Zi u

ZZZ
i “

#

xw, vS , a;w, vT , by

ˇ

ˇ

ˇ

ˇ

ˇ

(i) Du1, u2 : xw, u1, a;w, u2, by P Zi
(ii) S , T Ď N are finite and nonempty
(iii) ai P S iff bi P T

+

ZZZH
i “

#

xw, vS , a;w, vH, by

ˇ

ˇ

ˇ

ˇ

ˇ

(i) Du1, u2 : xw, u1, a;w, u2, by P Zi
(ii) S Ď N is finite and nonempty
(iii) S X tau “ H

+

ZBF
i “

$

’

&

’

%

xw, u1, a, a;w, u2, b, by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(i) xw, u1, a;w, u2, by P Zi
(ii) a P δ1pu1q and b P δ2pu2q
(iii) a “ ai iff b “ bi (iv) a P N
iff b P N

,

/

.

/

-

.

Then set: Zi`1 “ Zi Y ZAct
i Y ZZZ

i Y ZZZH
i Y ZBF

i .

Lemma B.2 (This Construction Can Continue Too). If xw, u1, a;w, u2, by P Zi`1, then
R1,w, u1, a » R2,w, u2, b and u1 “ w iff u2 “ w.
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Proof: Suppose xw, u1, a;w, u2, by P Zi`1. It is easy to verify that u1 “ w iff u2 “ w
by looking at the constructions above. If xw, u1, a;w, u2, by P Zi, then we are done. So
suppose xw, u1, a;w, u2, by R Zi.

First, (Predicate). If xw, u1, a;w, u2, by P ZAct
i Y ZZZ

i Y ZZZH
i , then we know that

Du1
1, u

1
2 : xw, u1

1, a;w, u1
2, by P Zi. So R1,w, u1

1, a » R2,w, u1
2, b. But since u1

1 “ w iff
u1
2 “ w, that means ai P N iff bi P N. So since u1 “ w iff u2 “ w, R1,w, u1, a and
R2,w, u2, b satisfy (Predicate). If instead xw, u1, a;w, u2, by “ xw, u1, c, c;w, u2, d, dy P

ZBF
i , then xw, u1, c;w, u2, dy P Zi, which (by the same reasoning as above) means ci P N

iff di P N. And by construction of ZBF
i , c P N iff d P N. So since u1 “ w iff u2 “ w,

again R1,w, u1, a and R2,w, u2, b satisfy (Predicate).
Next, (Existence). This is trivial if xw, u1, a;w, u2, by P ZAct

i , since δ1pwq “ δ2pwq “

Z. It is guaranteed by construction in all other cases.
Finally, (Equality). This is trivial in every case, except ZBF

i , in which case it is
guaranteed by construction. ∎

As before, define Z B
Ť

iPω Zi.

Proof (Proposition 4.3): Suppose xw, u1, a;w, u2, by P Z. Then there is an i such
that xw, u1, a;w, u2, by P Zi. By Lemma B.2, (Atomic) and (Eq) (as well as (Ex)) are
satisfied.
Act. By construction of ZAct

i , xw,w, a;w,w, by P Zi`1. ✓

Zig. Let u1
1 P W1. If u1

1 “ w, then this is covered by the above case. So let u1
1 “ vS

instead. Define T B tbi | ai P S u Y tcu where c P N ´ tbu is arbitrary. Then T
is finite and nonempty, and ai P S iff bi P T . So xw, vS , a;w, vT , by P ZZZ

i . ✓

Zag. As above, except in the case where we pick vH P W2. In that case, let S Ď N be
any finite nonempty set such that S Xtau “ H. Then xw, vS , a;w, vH, by P ZZZH

i .
✓

Back. Let a P δ1pu1q (we assume without loss of generality that a R tau). If a P N´,
then pick any new b P N´. If instead a P N, then since δ2pu2q X N is infinite,
pick any new b P δ2pu2q X N. Either way, xw, u1, a, a;w, u2, b, by P ZBF

i . ✓

Forth. As above. ✓ ∎

Other inexpressibility proofs are straightforward once the winning strategy for Eloïse is
worked out.

§C Inexpressibility in L1Mp«,@, Ó,F q

In this appendix, we will prove that (4) is not expressible as an L1Mp«,@, Ó,F q-formula.
Recall (4):

Dt pRps˚, tq ^ @x pRichpx; s˚q Ñ Poorpx; tqqq . (4)
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First, we define our models R3 “ xW3,R3, F3,D3, δ3, I3y and R4 “ xW4,R4, F4,D4, δ4, I4y.
Our global domains will contain Z plus a disjoint copy of N, which we will call N8 B
t8n | n P Nu. So D3 “ D4 “ Z Y N8. All the accessibility relations are universal in their
respective models. If T Ď N, let T8 B t8n | n P T u. Please note: throughout this section,
when we write T8, we mean N8 ´ T ; when we write S where S Ď N, we mean N ´ S .

For each finite nonempty S Ď N, and each finite T Ď N, W1 will contain a world wT
S and

a world vT
S . Intuitively, wT

S is a world where (i) every negative integer is poor, (ii) every
integer of pN ´ S q is rich, (iii) every object of T8 is rich, and (iv) nothing in S Y T8 exists.
vT

S is like wT
S except the rich and the poor are flipped. In addition, for any finite T Ď N,

there will be a world of the form wT
H in W1 (our actual world will be w B wH

H). W2 is like
W1 except it also contains worlds of the form vT

H. See Figure 7 for a picture.

N Y T8

N´

wT
H

N´

pN ´ S q Y T8

vT
S

pN ´ S q Y T8

N´

wT
S

R3

@S , T Ď N
S ,T finite
S ‰ H

@S , T Ď N
S ,T finite
S ‰ H

N Y T8

N´

wT
H

N´

pN ´ S q Y T8

vT
S

pN ´ S q Y T8

N´

wT
S

R4

@S , T Ď N
S ,T finite

@S , T Ď N
S ,T finite
S ‰ H

Figure 7: L1Mp«,@, Ó,F q-bisimilar models that still disagree on (R).

Observe R3 * p4qrws while R4 ( p4qrws. Furthermore, recall that the reason R1 and
R2 could not be used to show that (4) is not expressible as an L1Mp«,@, Ó,F q-formula was
because they disagreed on the following formulas at w:

Dx pRichpxq ^◇Ó pPoorpxq ^◻@y @Epyqqq (8)
Dx pRichpxq ^ xF y @ pPoorpxq ^◻@y @Epyqqq . (9)

Observe that this is no longer the case: w does not satisfy either (8) or (9) in R3 or R4.
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Proposition C.1 (Strengthened Inexpressibility of (R)). R3,w,w Ô«,@,Ó,F R4,w,w.

Proof: Clearly R3,w,w » R4,w,w. So suppose that R3, sT1
S 1
, tT2

S 2
, a » R4, s

T 1
1

S 1
1
, tT 1

2

S 1
2
, b,

where:
(I) sT1

S 1
“ wT1

S 1
iff sT 1

1

S 1
1

“ wT 1
1

S 1
1

(and likewise for t)

(II) ai P N´ iff bi P N´

(III) ai P S 1 Y T18 iff bi P S 1
1 Y T 1

18

(IV) ai P S 2 Y T28 iff bi P S 1
2 Y T 1

28

(V) |pS 1 ´ S 2q Y pT28 ´ T18q| “ |pS 1
1 ´ S 1

2q Y pT 1
28 ´ T 1

18q|.

Notice in particular that R3,w,w » R4,w,w meets all of these constraints vacuously.
We will show using (I)–(V) that, regardless of Abelard’s move, Eloïse can continue
the game in a way that preserves (I)–(V). Note throughout that if I use the same
letter, say u, for uT

S and uT 1

S 1 , I mean for uT
S to be a w-world iff uT 1

S 1 is a w-world.
First, suppose Abelard decides to pick an object a P δ3ptT2

S 2
q (the case where he

picks a b P δ4ptT 1
2

S 1
2
q is symmetric). If he does this, then obviously (I) and (V) are

met regardless of what Eloïse picks. So she just needs to ensure (II)–(IV) are met. If
a P N´, then Eloïse can pick an arbitrary b P N´ that has not already been picked.
Otherwise, since a P δ3ptT2

S 2
q, that means a R S 2 Y T28. There are two cases to

consider:

Case 1: a R S 1 Y T18. That means a P pN ´ pS 1 Y S 2qq Y pT18 Y T28q. But since S 1
1,

S 1
2, T 1

1, and T 1
2 are all finite, there will be infinitely many b P pN´ pS 1

1 Y S 1
2qq Y

pT 1
18 Y T 1

28q that have not been picked yet. So Eloïse can just pick an arbitrary
one of those, in which case b R S 1

1 Y T 1
18 and b R S 1

2 Y T 1
28. ✓

Case 2: a P S 1 Y T18. That means we need to ensure that b P S 1
1 Y T 1

18 while also
ensuring that b R S 1

2 Y T 1
28. That means we need:

b P pS 1
1 Y T 1

18q ´ pS 1
2 Y T 1

28q

“ pS 1
1 ´ S 1

2q Y pT 1
18 ´ T 1

28q

“ pS 1
1 ´ S 1

2q Y pT 1
28 ´ T 1

18q.

But since |pS 1 ´ S 2q Y pT28 ´ T18q| “ |pS 1
1 ´ S 1

2q Y pT 1
28 ´ T 1

18q|, and since
(II)–(IV) hold for a and b, it is easy to show that:

|rpS 1 ´ S 2q Y pT28 ´ T18qs ´ tau| “ |rpS 1
1 ´ S 1

2q Y pT 1
28 ´ T 1

18qs ´ tbu|

Hence, there must be some b P pS 1
1 ´ S 1

2q Y pT 1
28 ´ T 1

18q that has not been
picked yet. So Eloïse can just pick an arbitrary one of those. ✓
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Next, suppose Abelard decides to relocate the game. If he uses the @ or Ó moves,
then the constraints will all be vacuously satisfied. So suppose he decides to relocate
the game in R3 to

@

sT1
S 1
, uT3

S 3

D

. If T3 “ T1 and S 3 “ S 1, then Eloïse should pick uT 1
1

S 1
1
. If

T3 “ T2 and S 3 “ S 2, then she should pick uT 1
2

S 1
2
. Otherwise, Eloïse can pick a T 1

3 and
S 1
3 using a different method as follows. Define the following sets:

S ˚
3 B tbi P b | bi P N and ai P S 3 Y T18 u

T ˚
38 B tbi P b | bi P N8 and ai R S 3 Y T18 u .

One can verify that if S 1
3 Ď N and T 1

38 Ď N8 such that S 1
3Xtbu “ S ˚

3 and T 1
38 Xtbu “

T ˚
38, then ai P S 3 Y T38 iff bi P S 1

3 Y T 1
38. We will now show the following:

Claim: There are S 1
3 Ď N and T 1

38 Ď N8 such that:
(i) S 1

3 X tbu “ S ˚
3

(ii) T 1
38 X tbu “ T ˚

38, and
(iii) |pS 1 ´ S 3q Y pT38 ´ T18q| “ |pS 1

1 ´ S 1
3q Y pT 1

38 ´ T 1
18q|.

Suppose not. That is, suppose that every S 1
3 Ď N and T 1

38 Ď N8 that satisfy (i)
and (ii) fail to satisfy (iii). We will show that from this assumption, we can derive a
contradiction.

First, suppose there is an S 1
3 Ď N and T 1

38 Ď N8 satisfying (i) and (ii) such
that |pS 1 ´ S 3q Y pT38 ´ T18q| ą |pS 1

1 ´ S 1
3q Y pT 1

38 ´ T 1
18q|. Let n ă ω be such that

|pS 1 ´ S 3q Y pT38 ´ T18q| “ |pS 1
1 ´ S 1

3q Y pT 1
38 ´ T 1

18q| ` n (both sets are finite af-
ter all). Since T 1

18 and T 1
38 are finite, we can pick n arbitrary objects c P N8 ´

pT 1
18 Y T 1

38 Y tbuq and set T 2
38 B T 1

38 Y tcu. But then |pS 1 ´ S 3q Y pT38 ´ T18q| “

|pS 1
1 ´ S 1

3q Y pT 2
38 ´ T 1

18q|, and (ii) is still met replacing T 1
38 with T 2

38. ☇
Hence, it must be that for every S 1

3 Ď N and T 1
38 Ď N8 satisfying (i) and (ii),

|pS 1 ´ S 3q Y pT38 ´ T18q| ă |pS 1
1 ´ S 1

3q Y pT 1
38 ´ T 1

18q|. Now, we can assume with-
out loss of generality that pS 1

1 ´ S 1
3q Ď tbu and pT 1

38 ´ T 1
18q Ď tbu. Here is why. Sup-

pose pS 1
1´S 1

3q´tbu ‰ H. Then pick a c P pS 1
1´S 1

3q´tbu and set S 2
3 B S 1

3Ytcu. Then
|S 1

1 ´ S 2
3| ă |S 1

1 ´ S 1
3|, so |pS 1

1 ´ S 2
3q Y pT 1

38 ´ T 1
18q| ă |pS 1

1 ´ S 1
3q Y pT 1

38 ´ T 1
18q|.

S 2
3 still satisfies (i), so by hypothesis, it still must be that |pS 1 ´ S 3q Y pT38 ´ T18q| ă

|pS 1
1 ´ S 2

3q Y pT 1
38 ´ T 1

18q|. So we can just keep adding objects from pS 1
1 ´ S 1

3q ´ tbu

to S 1
3 in this way until pS 1

1 ´ S 1
3q ´ tbu “ H. Likewise, we can keep removing objects

in T 1
38 from pT 1

38 ´ T 1
18q ´ tbu until pT 1

38 ´ T 1
18q ´ tbu “ H.

Thus, we may assume that pS 1
1 ´ S 1

3q Ď tbu and pT 1
38 ´ T 1

18q Ď tbu. It follows
that pS 1

1 ´ S 1
3q Y pT 1

38 ´ T 1
18q Ď tbu. But if bi P pS 1

1 ´ S 1
3q Y pT 1

38 ´ T 1
18q, then

ai P pS 1 ´ S 3q Y pT38 ´ T18q by (III) and by the fact that (i) and (ii) imply that
ai P S 3 Y T38 iff bi P S 1

3 Y T 1
38. This gives rise to an injection from pS 1

1 ´ S 1
3q Y

pT 1
18 X T 1

38q to pS 1 ´ S 3q Y pT18 X T38q, which means |pS 1 ´ S 3q Y pT18 X T38q| ě
ˇ

ˇpS 1
1 ´ S 1

3q Y pT 1
18 X T 1

38q
ˇ

ˇ. ☇ This completes our proof of the claim above.
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Thus, Eloïse can just pick any such S 1
3 and T 1

38, and it will have the desired
properties. If instead Abelard decides to relocate the game in R4, the strategy is the
same: the reasoning above did not rely on Abelard’s S 3 being nonempty. Finally, the
case where Abelard decides to relocate the game in R3 to

@

uT3
S 3
, tT2

S 1

D

is symmetric. ∎

§D Mapping the Expressive Hierarchy
In this appendix, we map out in more detail the relative expressive power for various
fragments of L1Mp«,@, Ó,F ,Πq. We will start by showing that, ignoring E, «, and Π, the
relative expressive power for the remaining languages is accurately diagrammed by Figure
8. This includes the strict inclusions and incomparabilities the diagram suggests. Note that
for any class of models C, ďC is a preorder.

L1M ” L1MpÓq

L1MpF q L1Mp@q

L1Mp@,F q L1Mp@, ÓqL1MpÓ,F q

L1Mp@, Ó,F q

Figure 8: Relative (D-)expressive power for languages between L1M and L1Mp@, Ó,F q.

Lemma D.1 (Adding Only Ó Does Nothing). L1M ” L1MpÓq.

Proof: First, note that, by induction, for any L1MpÓq-formula φ, M,w, v, g , φ iff
M,w1, v, g , φ. Thus, where φ is anL1MpÓq-formula, let φ´ be the result of removing
every instance of Ó from φ. Then it is easy to show by induction (using this fact for
the Ó-case) that , φ Ø φ´. Hence, L1MpÓq ď L1M, and therefore L1M ” L1MpÓq. ∎

Throughout, when I say “IM is empty” or “IM “ H”, what I mean is that for all w P WM

and all predicates P, IMpP,wq “ H. Also, if a is clear from context, I will use “ai” to stand
for an arbitrary element of a.
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Lemma D.2 (Adding F ). L1MpF q ęD L1Mp«,@, Ó,Πq.

Proof: Let M1 “ xW1,R1, F1,D1, δ1, I1y, where W1 “ twu, D1 “ δ1pwq “ tau,
R1 “ F1 “ txw,wyu, and I1 “ H. Let M2 be just like M1 except F2 “ H. Then
M1,w,w Ô«,@,Ó,Π M2,w,w, butM1,w,w . FK whileM2,w,w , FK. ∎

WhereM is a model, letMEÑP be the model just likeM except IM
EÑP

pP,wq “ δMpwq

for all w P WM. That is,MEÑP effectively makes P an existence predicate. DefineM«ÑP

likewise. It will be useful to note the following:

Lemma D.3 (Replacing E). If M,w, v, a ÔLpEq N ,w1, v1, b, then MEÑP,w, v, a ÔLpEq

NEÑP,w1, v1, b. In addition, if IMpP, uq “ H “ INpP, u1q for all u P WM and all u1 P

WN , then the converse holds as well. Likewise for « in place of E.

We can use this trick to bootstrap off of previous inexpressibility results which used E or
« for languages without E or «. For instance, it is relatively easy to show L1Mp@q ęUD
L1Mp«, Ó,F q. Take models E1 and E2 from Figure 2. Since E1,wN,wN Ô« E2,wN,wN, we
can use Lemma D.3 to conclude EEÑP

1 ,wN,wN Ô« EEÑP
2 ,wN,wN, though they disagree on

◇Dx @¬ Ppxq.
However, this proof does not show thatL1Mp@q ęUD L1Mp«, Ó,F ,Πq, since the models

are distinguishable by Σx ¬ Ppxq. Lemma D.4 strengthens this result to include Π, again
using Lemma D.3:36

Lemma D.4 (Adding @). L1Mp@q ęUD L1Mp«, Ó,F ,Πq.

36Hodes [1984b, pp. 445–446] claimed to have a proof that L1Mp«,@q ęUD L1Mp«,Πq. He also constructs
two models which he claims satisfy the same L1Mp«,Πq-formulas, but disagree on the L1Mp«,@q-formula
θ2 “ ◻ pDx @¬Epxq Ñ Dě2x @¬Epxqq. Here are the models A and B he describes (p. 445, his notation; Apwq

and Bpwq in Hodes’s notation means δApwq and δBpwq in ours, and xw, ay P VpPq in his notation means a P

IpP,wq in ours; he also writeA, 0 ( φ in place of ourA, 0, 0 , φ):
Let W “ t0u Y tpn,mq | n ‰ m, n,m P ωu, W 1 “ W Y t1u. Let Ap0q “ Bp0q “ ω, Appn,mqq “

Bppn,mqq “ pω ´ tn,muq Y t´n | n P ωu, let VpPq be empty for all P P Pred, A “ pW, A,Vq,
B “ pW 1, B,Vq. ClearlyA, 0 ( θ2 but B, 0 * θ2.

However, Hodes’s description of these models is incomplete, since crucially the local domain of 1 is in B is
never specified, and the proof that follows gives no indication of what it might be. Moreover, given the proof
requires that A, 0, 0 , θ2 and B, 0, 0 . θ2, we can infer that it would have to be that Bp1q X t´n | n P ωu has
exactly one member (since t´n | n P ωu is the set of objects that do not exist at 0). But if that is right, then these
models are distinguishable by the following L1Mp«,Πq-formula:

ΣxΣy px ff y ^ ¬Epxq ^ ¬Epyq ^◇pEpxq ^ ¬Epyqqq .

The proof of Lemma D.4 was inspired by an attempt to fix Hodes’s proof.
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Proof: It is easy to show that if φ is an L1Mp«, Ó,F ,Πq-formula, then ,U F φ Ø φ

(just use the observation from the proof of Lemma D.1). So every L1Mp«, Ó,F ,Πq-
formula is U-equivalent to an L1Mp«, Ó,Πq-formula. But if ψ is an L1Mp«, Ó,Πq-
formula, then ,U Óψ Ø ψ. Putting these together, every L1Mp«, Ó,F ,Πq-formula is
U-equivalent to anL1Mp«,Πq-formula. So it suffices to find twoL1Mp«,Πq-bisimilar
models in UD that disagree on some L1Mp@q-formula.

LetM1 “ xW1,R1, F1,D1, δ1, I1y, where:

W1 “ twu Y tvT
S | S Ď N, T Ď N´, and 1 ă |S | , |T | ă ℵ0 u ,

R1 and F1 are universal, D1 “ Z, δ1pwq “ N, δ1pvS q “ pN ´ S q Y T , and I1 “ H. Let
M2 be likeM1 except that W2 “ W1 Y tvu, and δ2pvq “ pN ´ t1uq Y t´1u. Observe:

M1,w,w , ◻ pDx @¬Epxq Ñ Dě2x @¬Epxqq

M2,w,w . ◻ pDx @¬Epxq Ñ Dě2x @¬Epxqq .

However, we will show thatM1,w,w Ô«,Π M2,w,w. Clearly w,w » w,w. Suppose
w, u1, a » w, u2, b. Since δ1pu1q and δ1pu1q are infinite, if Abelard picks an a1 P D1,
then Eloïse can find a b1 P D2 so that w, u1, a, a1 » w, u2, b, b1 by ensuring that a1 P

δ1pu1q iff b1 P δ2pu2q. Likewise if Abelard picks a b1 P D2. Now, suppose Abelard
picks an u1

1 P W1. Define S “ tbi P N | ai R δ1pu1qu and T “ tbi P N´ | ai P δ1pu1qu.
(If |S | ď 1, add a couple of elements from N ´ tbu to S . If |T | ď 1, add a couple of
elements from N´ ´ tbu to T .) Then ai P δ1pu1q iff bi P δ2pvT

S q. So w, vT
S , a » w, vT 1

S 1 , b.
Likewise if Abelard chooses a u1

2 P W2, even if u1
2 “ v. Thus, using Lemma D.3,

L1Mp@q ęUD L1Mp«,Πq. ∎

Lemma D.5 (Adding Two Operators). L1MpÓ,F q ęD L1Mp«,@,F ,Πq ğD L1Mp@, Óq.

Proof: First, L1MpÓ,F q ęD L1Mp@,F q. Let M1 “ xW1,R1, F1,D1, δ1, I1y, where
W1 “ tw, vu, R1 “ W1 ˆ W1, F1 “ H, D1 “ δ1pwq “ δ1pvq “ tau, and I1 “ H. Let
M2 be likeM1 except F2 “ txv, vyu. ThenM1,w,w Ô«,@,F ,Π M2,w,w (since F1rws “

F2rws “ H), but M1,w,w , ◻ÓFK, while M2,w,w . ◻ÓFK. So L1MpÓ,F q ęD
L1Mp«,@,F ,Πq.

Next, L1Mp@, Óq ęD L1Mp«,@,F ,Πq. Consider the modelsN1 andN2 from Fig-
ure 4. Modify them so that F1 “ F2 “ H, and call the resulting models N 1

1 and N 1
2.

Then N 1
1, z, z Ô«,@,F ,Π N 1

2, z, z, but they disagree on ◻Ó◇@x p@Richpxq Ñ Poorpxqq.
Hence, L1Mp@, Óq ęD L1Mp«,@,F ,Πq. ∎

It is tedious, but straightforward, to show the following using the lemmas above:

Theorem D.6 (Completeness of Figure 8). Figure 8 is a complete diagram of the ex-
pressive power of the languages presented in that diagram.
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Now we turn to extensions with E, «, and Π. It will help to define back-and-forth
games for LTS and some of its fragments. First, an LTS-formula is almost E-free if it can
be built from atomics other than those of the form Epx; sq using negation, conjunction,
object quantification, state quantification, and E-bounded object quantification. (Thus, E
only occurs as the bounds of object quantifiers.) Let LTS

´« be the «-free fragment, LTS
´«,pEq

be the «-free and almost E-free fragment, and LTS
æE be the E-bounded fragment of LTS.

Definition D.7 (Back-and-Forth System). LetM and N be models. A back-and-forth
system between M and N is a nonempty variably polyadic relation Z such that
whenever Zpw, a; v, bq, |w| “ |v| ă ℵ0 and |a| “ |b| ă ℵ0, and if Zpw, a; v, bq, then:
(TS Atomic) @k ď |w| @m P N@Pm P PREDm @i1, . . . , im ď |a| :

xai1 , . . . , aimy P IMpPm,wkq ô xbi1 , . . . , bimy P INpPm, vkq

(TS Eq) @n,m ď |a| : an “ am iff bn “ bm

(TS StEq) @k, l ď |w| : wk “ wl iff vk “ vl

(TS Ex) @k ď |w| @n ď |a| : an P δMpwkq iff bn P δNpvkq

(TS Acc) @k, l ď |w| : Rpwk,wlq iff Rpvk, vlq and Fpwk,wlq iff Fpvk, vlq

(TS Zig) @w1 P WM Dv1 P WN : Zpw,w1, a; v, v1, bq

(TS Zag) @v1 P WN Dw1 P WM : Zpw,w1, a; v, v1, bq

(TS Forth) @a1 P DM Db1 P DN : Zpw, a, a1; v, b, b1q

(TS Back) @b1 P DN Da1 P DM : Zpw, a, a1; v, b, b1q.

We may writeM,w, a ÔTS N , v, b to indicate thatM,w, a and N , v, b are back-and-
forth equivalent. If we drop (TS Eq) and (TS StEq), we get a notion of a back-and-
forth system for LTS

´«. We get a notion of a back-and-forth system for LTS
´«,pEq

if we
drop (TS Eq), (TS StEq), and (TS Ex) and we add:

(TS E-Forth) @k ď |w| @a1 P δMpwkq Db1 P δNpvkq : Zpw, a, a1; v, b, b1q

(TS E-Back) @k ď |v| @b1 P δNpvkq Da1 P δMpwkq : Zpw, a, a1; v, b, b1q.

If we replace (TS Forth) and (TS Back) with (TS E-Forth) and (TS E-Back), we get a
notion of a back-and-forth system for LTS

æE .

Definition D.8 (LTS-Equivalence). M,w, a and N , v, b are LTS-equivalent if for all
LTS-formulas αpx; sq (where |x| ď |a| and |s| ď |w|), M ( αra;ws iff N ( αrb; vs.
We may write “M,w, a ”TS N , v, b” to indicate that M,w, a and N , v, b are LTS-
equivalent. Likewise for the various fragments of LTS.
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It is easy to check thatM,w, a ÔTS N , v, b impliesM,w, a ”TS N , v, b, and likewise for the
various fragments ofLTS. Now, sayL1 ď˚ L2 if everyL1-formula is equivalent to someL2-
formula. This is more stringent than ď, since some L1-formula might only be expressible
as a set of L2-formulas. Observe by Definition 2.6 that L1Mp@, Ó,F ,Πq ď˚ LTS

´«,pEq
, that

L1MpE,@, Ó,F ,Πq ď˚ LTS
´«, and that L1Mp«,@, Ó,F q ď˚ LTS

æE .

Lemma D.9 (Adding E and «). If L1M ď˚ L ď˚ LTS
´«,pEq

, then L ă LpEq ă Lp«q.
Likewise if relativize to D, U, or UD.

Proof: Recall the models E and E1 from Figure 1. It is easy to check that via our orig-
inal bisimulation, E,w,w ÔTS´«,pEq E1,w,w (remember, you do not need to satisfy
(TS Eq) or (TS Ex) in this back-and-forth game!). But these models are distinguish-
able by the L1MpEq-formula ◇Dx◇¬Epxq. So L1MpEq ę LTS

´«,pEq
. Suppose now

for reductio that LpEq ď L. Since L1MpEq ď˚ LpEq (easily verified by induction),
L1MpEq ď L ď˚ LTS

´«,pEq
, ☇. So LpEq ę L, and thus L ă LpEq.

As for LpEq ă Lp«q, revise E and E1 by deleting the world w from the models.
Call the resulting models E´ and E1

´. Then E´, v ÔTS´« E1
´, v, but they disagree on

Dx Dy px ff yq. So L1Mp«q ę LTS
´«. But LpEq ď Lp«q, so reasoning as before (noting

that LpEq ď˚ LTS
´«), we have that LpEq ă Lp«q. ∎

Now, where L1 and L2 were languages in Figure 8 such that L1 ă L2, we can show
that the inclusions involving their extensions with E or « can be diagrammed as in Figure
9. First, the arrows that are present are immediate by Lemma D.9 and by the fact that if
L1 ă L2 in Figure 8, then we already have L1 ă˚ L2. Next, L1pEq ę L2, since if it were,
we would have L1MpEq ď˚ L1pEq ď L2 ď˚ LTS

´«,pEq
ğ L1MpEq, contrary to Lemma D.9.

Likewise, L1p«q ę L2pEq. Finally, observe that in the results used above to show that
L2 ę L1, we already showed that L2 ę L1p«,Πq. Thus, L2 ę L1p«q.

L1 L2

L1pEq

L1p«q

L2pEq

L2p«q

Figure 9: Relative expressive power after adding E or «.

39



§D Mapping the Expressive Hierarchy Alex Kocurek

Lemma D.10 (Adding Π). If L1M ď˚ L ď˚ LTS
æE , then L ă LpΠq. Likewise if we

relativize to U. Also, if L1M ď˚ L ď˚ L1Mp«,@, Ó,F q, then L ăD LpΠq.

Proof: Let M1 “ xW1,R1, F1,D1, δ1, I1y, where W1 “ twu, R1 “ F1 “ txw,wyu,
D1 “ tau, δ1pwq “ tau, I1pP,wq “ tau. LetM2 be just likeM1 except D2 “ ta, bu.
ThenM1,w ÔTSæE M2,w, but they disagree on the L1MpΠq-formula Σx ¬ Ppxq. So
L1MpΠq ę LTS

æE . Reasoning as before, L ă LpΠq.
Suppose now we restrict to D. Let M1 “ xW1,R1, F1,D1, δ1, I1y, where W1 “

twu Y tvn | n P Nu, R1 “ F1 “ txw, vny | n P Nu, δ1pwq “ N, δ1pvnq “ N´ tnu, IpP,wq “

H, and for each n P N, IpP, vnq “ tnu. LetM2 be just likeM1 except W2 “ W1 Y tuu,
where u R W1, R2 “ R1 Y txw, uyu, F2 “ F1, δ2puq “ N, and IpP, uq “ H. One can
show that M1,w,w Ô«,@,Ó,F M2,w,w. But, they disagree on the L1MpΠq-formula
◻Σx Ppxq. So L1MpΠq ęD L1Mp«,@, Ó,F q. So L ăD LpΠq. ∎

So once again, using Lemma D.10 and the results above, we can verify that ifL1 andL2 are
in Figure 8 and L1 ă L2, then their extensions involving Π can be represented in Figure
10. This holds even if we add E or «. Thus, Figure 5 from §4 is correct. Moreover, it is still
correct even relative to D.

L1 L2

L1pΠq L2pΠq

Figure 10: Relative expressive power after adding Π.

We now turn to asking to what extent these results hold relative to U and UD. We
only give a partial answer here. First, set aside E, «, and Π, and focus just on U. Then the
diagram of expressive power looks something like Figure 11 (whether we should include
the dashed arrows has yet to be determined).

First, if φ is @-free, then ,U pF φ Ø φq and ,U pÓφ Ø φq. So L1M ”U L1MpÓq ”U
L1MpF q ”U L1MpÓ,F q. But still L1M ăU L1Mp@q by Lemma D.4. And the remarks on
page 16 (together with Lemma D.3) show that L1Mp@q ăU L1Mp@, Óq and that L1Mp@q ăU
L1Mp@,F q. As for the lack of inclusion from L1Mp@,F q to L1Mp@, Óq:

Lemma D.11 (F ,@ Not Included in @, Ó). L1Mp@,F q ęUD L1Mp«,@, Óq.

Proof: LetM1 “ xW1,R1, F1,D1, δ1, I1y where:
W1 “ tvT

S | S Ď N, T Ď N´, |T | ă ℵ0, and either S “ H or 1 ă |S | ă ℵ0 u ,
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L1M ”U L1MpÓq ”U L1MpF q ”U L1MpÓ,F q

L1Mp@q

L1Mp@,F q L1Mp@, Óq

L1Mp@, Ó,F q

?

?

Figure 11: Relative U-expressive power for languages between L1M and L1Mp@, Ó,F q.

R1 “ F1 “ W1 ˆ W1, D1 “ Z, δ1pwq “ N, δ1pvT
S q “ pN ´ S q Y T , and I1 “ H. LetM2

be just likeM1, except we allow |S | “ 1. Let w “ vH
H. Observe that:

M1,w,w , F pDx @¬Epxq Ñ Dě2x @¬Epxqq

M2,w,w . F pDx @¬Epxq Ñ Dě2x @¬Epxqq .

However, we will show M1,w,w Ô«,@,Ó M2,w,w. Clearly w,w » w,w. Suppose
throughout that u1, u2, a » u1

1, u
1
2, b and that the following hold:

(I) ai P δ1pu1q iff bi P δ1pu1q

(II) u1 “ u2 iff u1
1 “ u1

2

(III)
ˇ

ˇpδ1pu1q X δ1pu2qq ´ tau
ˇ

ˇ “
ˇ

ˇpδ2pu1
1q X δ2pu1

2qq ´ tbu
ˇ

ˇ.

Observe that no matter what u1 and u2 are, pδ1pu1q X δ1pu2qq ´ tau is infinite, and
pδ1pu1q X δ1pu2qq ´ tau is finite. Likewise for u1

1 and u1
2.

First, suppose Abelard picks a new a P δ1pu2q. If a P δ1pu1q, then since pδ2pu1
1q X

δ2pu1
2qq ´ tbu is infinite, Eloïse will always be able to match a with a b P pδ2pu1

1q X

δ2pu1
2qq´tbu. If instead a R δ1pu1q, then by (III), we can find a b P pδ2pu1

1qXδ2pu1
2qq´tbu

to match a with. A symmetric argument applies if Abelard instead picks a b P δ2pu1
2q.

Next, suppose Abelard decides to relocate the game. If he invokes (Act) or (Diag),
then clearly (I)–(III) hold. So suppose he decides to pick a u3 P W3 to relocate to.
Eloïse’s choice is obvious if u3 “ u1, so suppose u3 ‰ u1. We will construct a T 1

3 and
a S 1

3 of the appropriate sort and show they meet (I)–(III). First, pick two elements
c, d P pNX δ2pu1

1qq ´ tbu (note that pNX δ2pu1
1qq ´ tbu is infinite since each world has

cofinitely many positive integers) and define:

S 1
3 B tbi P N | ai R δ1pu3qu Y pN ´ pδ2pu1

1q Y tbuqq Y tc, du .
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Note that where u1
1 “ vT 1

1

S 1
1
, N ´ pδ2pu1

1q Y tbuq “ S 1
1 ´ tbu is finite, so S 1

3 is finite and
S 1
1 ´ tbu Ď S 1

3. Second, define T 1
3,0 B tbi P N´ | ai P δ1pu3qu. Observe that:

rδ2pu1
1q X δ2pv

T 1
3,0

S 1
3

qs ´ tbu “ rpS 1
1 Y pN´ ´ T 1

1qq X ppN ´ S 1
3q Y T 1

3,0qs ´ tbu

“ rpS 1
1 X pN ´ S 1

3qq Y ppN´ ´ T 1
1q X T 1

3,0qs ´ tbu

“ rpS 1
1 X tbuq Y T 1

3,0s ´ tbu “ H.

Now, where k “
ˇ

ˇpδ1pu1q X δ1pu2qq ´ tau
ˇ

ˇ, pick k-many elements e1, . . . , ek P N´ ´

pδ2pu1
1q Y tbuq (notice that N´ ´ pδ2pu1

1q Y tbuq is infinite, since each world only has
finitely many negative integers). Define T 1

3 “ T 1
3,0 Y te1, . . . , eku. We will show that

if Eloïse chooses u1
3 “ vT 1

3

S 1
3
, then all the necessary constraints are met.

We first need to show u1, u3, a » u1
1, v

T 1
3

S 1
3
, b—in particular, ai P δ1pu3q iff bi P δ2pu1

3q.
Suppose ai P δ1pu3q. Either bi P N or bi P N´. If bi P N, then bi R S 1

3, so bi P δ2pu1
3q.

If bi P N´, then bi P T 1
3,0 Ď T 1

3, so bi P δ2pu1
3q. Suppose instead ai R δ1pu3q. Again,

either bi P N or bi P N´. If bi P N, then bi P S 1
3, so bi R δ2pu1

3q. If bi P N´, then bi R T 1
3,

so bi R δ2pu1
3q. No matter what, ai P δ1pu3q iff bi P δ2pu1

3q.
Next, we need to show (I)–(III). (I) holds by default. Now, we assumed above

u3 ‰ u1, so we need u1
3 ‰ u1

1. But recall that we picked c, d so that c, d P δ2pu1
1q. But

c, d P S 1
3, so c, d R δ2pu1

3q. Thus, u1
3 ‰ u1

1. So (II) holds. Finally, using the calculations
above, since e1, . . . , ek P N´ ´ pδ2pu1

1q Y tbuq “ N´ ´ pT 1
1 Y tbuq, we find that:

rδ2pu1
1q X δ2pv

T 1
3,0

S 1
3

qs ´ tbu “ rpS 1
1 X tbuq Y pT 1

3,0 Y te1, . . . , ekuqs ´ tbu

“ te1, . . . , eku ,

where k “
ˇ

ˇpδ1pu1q X δ1pu2qq ´ tau
ˇ

ˇ. So (III) holds. Thus, if Abelard relocates to
u3, Eloïse can choose to relocate to u1

3. And since |S 1
3| ą 1, a symmetric argument

applies if Abelard decides to relocate the game inM2. The proof is completed with
one application of Lemma D.3. ∎

Now, because the proof of Lemma D.9 only uses models in U (in fact, in UD), we can
still safely say that adding E or « can be diagrammed as in Figure 9. Adding Π makes
things more complicated. Recall that relative to the class of all models, we could simply
say that if L1M ă˚ L1 ă˚ L2 ď˚ L1Mp«,@, Ó,F q, then Li ă LipΠq, L1pΠq ă L2pΠq, and
L1pΠq and L2 were incomparable. However, showing that L2 ę L1pΠq crucially relied on
the fact that all of our inexpressibility proofs for showing L2 ę L1 already showed that
L2 ę L1pΠq. But because Lemma D.11 left out Π (which is crucial, as we will see below),
we cannot conclude that L2 ęU L1pΠq.

We can still verify by hand that in some cases,L2 ę L1pΠq. For one thing,L1Mp@q ęUD
L1Mp«,Πq by Lemma D.4. We also have that L1Mp@, Óq ęUD L1Mp«,@,Πq by Proposi-
tion 4.4. Likewise, L1Mp@,F q ęUD L1Mp«,@,Πq. But importantly, some of these lan-
guages without E and Π that were distinct collapse when you add E and Π:

42



§D Mapping the Expressive Hierarchy Alex Kocurek

Lemma D.12 (Collapse). L1MpE,@, Ó,Πq ”U L1MpE,@,F ,Πq ”U L1MpE,@, Ó,F ,Πq.
Likewise if we add « to these languages.

Proof: Throughout, let L˚ “ L1MpE,@, Ó,F ,Πq. Note that the following are all
U-valid (where α is an atomic formula):

Óα Ø α

Ó¬φ Ø ¬ Óφ

Ópφ ^ ψq Ø pÓφ ^ Óψq

Ó@φ Ø Óφ

ÓÓφ Ø Óφ

ÓF φ Ø F φ
ÓΠxφ Ø Πx Óφ.

Likewise, all of these are U-valid:

@¬φ Ø ¬@φ
@pφ ^ ψq Ø p@φ ^ @ψq

@◻φ Ø ◻φ
@@φ Ø @φ
@Óφ Ø @φ

@Πxφ Ø Πx @φ.

Using these rules, we can push each @ and each Ó inwards as much as possible until
@ only occurs right before a F or an atomic, and Ó only occurs right before a ◻.
Moreover, we can delete any F and Ó if it does not scope over an @, and repeat.
After this entire process, the resulting formula will be U-equivalent to our original.
So assume without loss of generality that our formula has already gone through
this pre-processing.

Now, say that an L˚-formula is in normal form if it is either a non-modal for-
mula, or if it is of the form:

Q1y1 ¨ ¨ ¨QnynBCpψ, ‹θq,

where Qi P tΣ,Πu (the quantifier block may be empty), BC is some boolean combi-
nation of its components, ψ are all non-modal, each ‹i P t◻,@, Ó◻,F u, and θ are all
in normal form. By induction, one can convert everyL˚-formula into one of normal
form (essentially by pre-processing as above, and then replacing bound variables
and pulling out quantifiers). Thus, we may assume without loss of generality that
our formula is already in normal form.

Finally, suppose an L˚-formula has been pre-processed and is in the form:

Q1yn ¨ ¨ ¨QnynBCpφ,@ψ,◻θ, Ó◻χ,F ξq,
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where φ are all non-modal, and ψ, θ, χ, and ξ are all in normal form (notice that since
we pre-processed, each ψ is either an atomic or of the form Fψ1). Then the following
are U-valid:

FQ1yn ¨ ¨ ¨QnynBCpφ,@ψ,◻θ, Ó◻χ,F ξq Ø Ó◻Q1yn ¨ ¨ ¨QnynBCp@φ, ψ,◻θ, Ó◻χ,F ξq
Ó◻Q1yn ¨ ¨ ¨QnynBCpφ,@ψ,◻θ, Ó◻χ,F ξq Ø FQ1yn ¨ ¨ ¨ QnynBCp@φ, ψ,◻θ, Ó◻χ,F ξq.

Thus, in our original formula, we can replace any F with Ó◻ or vice versa. ∎

To sum up, the following questions have yet to be answered about the relative U-expressive
power of these languages:

• Is L1Mp@, Óq ăU L1Mp«,@,F q?
• Is L1Mp@, Ó,F q ăU L1Mp«,@,F q?
• Is L1Mp@,F q ăU L1Mp@, Ó,Πq or L1Mp@, Óq ăU L1Mp@,F ,Πq?
• Is L1Mp@, Ó,F q ăU L1Mp@, Ó,Πq or L1Mp@, Ó,F q ăU L1Mp@,F ,Πq?

We now finally turn to UD. Excluding E, «, and Π, the diagram in Figure 11 is still
correct (again, the dashed arrows have not been determined). And again, Figure 9 is still
correct when adding either E or «. But adding Π is even trickier than before, since we can
no longer appeal to Lemma D.10. We still have the lack of inclusions mentioned above
Lemma D.12. We also have the following lack of inclusions:

Lemma D.13 (Inexpressibility of @ with Π). L1MpΠq ęUD L1Mp«,@q.

Proof: Recall that R1,w,w Ô«,@ R2,w,w (Figure 3). But the models are distin-
guished by Dx pRichpxq ^◻ pPoorpxq Ñ Σy p¬Richpyq ^ ¬Poorpyqqqq. ∎

Lemma D.14 (Inexpressibility of @,Π with @, Ó,F ). L1Mp@,Πq ęUD L1Mp«,@, Ó,F q.

Proof: This immediately follows from Proposition C.1. ∎

However, we now have more inclusions. For example, L1MpΠq ăUD L1Mp@, Óq (just set
Πxφ B Ó◻@x @φ).37 Likewise, L1MpΠq ăUD L1Mp@,F q, though the proof is a bit more
roundabout.38 These inclusions are strict by Lemma D.4. The questions mentioned above
for U-expressive power are still unanswered for UD-expressive power. And again, answer-
ing these questions suffices to settle the remaining inclusions.

37See, for instance, Hodes [1984b]; Forbes [1989]; Fine [2005]; Correia [2007].
38Here is the idea. First, every @ in φ is in the immediate scope of a F , then ,U ◻φ Ø F@φ. So every ◻

in a L1MpΠq-formula can be replaced by F@. Second, note that ,d
UD Πxφ Ø ◻@x @φ. So having replaced

every ◻ with F@, every Π is in the scope of a F@, so we can replace every Πx with ◻@x @. The result is a
UD-equivalent L1Mp@,F q-formula.
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