Equivalences in PPL

October 15, 2013

Throughout, assume α and β are (possibly complex) predicates. We'll use '= to denote logical equivalence.

Quantifier Exchange:

$$\sim \exists \alpha \Rightarrow \models \forall \sim \alpha$$
$$\sim \forall \alpha \Rightarrow \models \exists \sim \alpha$$

$\sim \exists \alpha \equiv \forall \sim \alpha$

Quantifier Replacement:
$$\sim \exists \sim \alpha \implies \forall \alpha$$

$$\sim \exists \sim \alpha \Rightarrow \vdash \forall \alpha$$
$$\sim \forall \sim \alpha \Rightarrow \vdash \exists \alpha$$

Important Examples:

Existence:

$$\forall \alpha \vDash \exists \alpha, \mathbf{but}$$
: $\forall (\alpha \supset \beta) \not\vDash \exists \alpha$

Conjunction:

$$\exists (\alpha \& \beta) \not= \models \exists \alpha \& \exists \beta$$
$$\forall (\alpha \& \beta) = \models \forall \alpha \& \forall \beta$$

Disjunction:

$$\exists (\alpha \lor \beta) \Rightarrow \vdash \exists \alpha \lor \exists \beta$$
$$\forall (\alpha \lor \beta) \Rightarrow \not \vdash \forall \alpha \lor \forall \beta$$

Conditional:

$$\forall (\alpha \supset \beta) \not= \models \forall \alpha \supset \forall \beta$$
$$\exists (\alpha \supset \beta) = \models \forall \alpha \supset \exists \beta$$

(You can work this out if you remember that $\lceil \alpha \rceil \beta \rceil$ is equivalent to $\lceil \sim \alpha \lor \beta \rceil$, and use the rules given.)

Common Translation Schemes from English into PPL:

Some α s are β s \Rightarrow $\exists (\alpha \& \beta)$ There are some α s that are β \Rightarrow $\exists (\alpha \& \beta)$ All α s are β s \Rightarrow $\forall (\alpha \supset \beta)$ Every α is a β \Rightarrow $\forall (\alpha \supset \beta)$ No α s are β s \Rightarrow $\neg \exists (\alpha \& \beta)$ No α s are β s \Rightarrow $\neg \exists (\alpha \& \beta)$ No α s are β s \Rightarrow $\forall (\alpha \supset \neg \beta)$ The α s are exactly the β s \Rightarrow $\forall (\alpha \leftrightarrow \beta)$

Venn Diagram Examples:

$\exists (\alpha \& \beta)$:

 $\sim \forall (\alpha \supset \beta)$:

 $\sim \exists (\alpha \& \beta)$:

 $\forall (\alpha \supset \sim \beta)$:

 $\underline{\sim}\exists(\alpha \& \sim\beta)$:

 $\underline{\forall (\alpha \vee \beta)}$:

 $\exists (\alpha \lor \beta)$:

