Truth-Functional Equivalences

In what follows, A, B, C, ... can be simple *or* complex sentences. Here, " $A \Leftrightarrow B$ " should be read as "*A* is equivalent to *B*," i.e. *A* has the same truth table as *B*. The symbol ' \Leftrightarrow ' is *not* a connective!

Tautologies (always \top): $A \lor -A$ $A \supset A$ $A \supset (B \supset A)$ -(any contradiction) **Contradictions** (always \perp): $A \cdot -A$ $A \equiv -A$ $A \cdot (A \supset B) \cdot -B$ -(any tautology)

De Morgan's Laws: $-(A \lor B) \Leftrightarrow (-A \cdot -B)$ $-(A \cdot B) \Leftrightarrow (-A \lor -B)$

Double Negation: $--A \Leftrightarrow A$

Distribution:

 $A \cdot (B \lor C) \Leftrightarrow (A \cdot B) \lor (A \cdot C)$ $A \lor (B \cdot C) \Leftrightarrow (A \lor B) \cdot (A \lor C)$

Associativity: $A \cdot (B \cdot C) \Leftrightarrow (A \cdot B) \cdot C$ $A \vee (B \vee C) \Leftrightarrow (A \vee B) \vee C$ $A \equiv (B \equiv C) \Leftrightarrow (A \equiv B) \equiv C$

Commutativity: $A \cdot C \Leftrightarrow B \cdot A$ $A \lor C \Leftrightarrow B \lor A$

Idempotence: $A \cdot A \Leftrightarrow A$ $A \lor A \Leftrightarrow A$

Manipulating Conditionals: $A \supset (B \supset C) \Leftrightarrow B \supset (A \supset C)$ $A \supset (B \supset C) \Leftrightarrow (A \cdot B) \supset C$ $A \supset B \Leftrightarrow -B \supset -A$ $A \equiv B \Leftrightarrow -A \equiv -B$ **Paradoxes of Material Conditional:** $A \supset (B \lor -B)$ $(A . -A) \supset B$ $(A \supset B) \lor (B \supset A)$ $A \supset (B \supset A)$

<u>Note</u>: You *cannot* read " $A \supset B$ " as "A *implies* B" or "A *entails* B," except in very special circumstances (e.g. when doing mathematics, maybe).

Translation Guide for Conditionals:

$\underline{A \supset B}$
A only if B
A only when B
If <i>A</i> , then <i>B</i>
₿ unless −A
A just in case B^{1}

 $\frac{B \supset A}{A \text{ if } B}$ A when B A given B A provided (that) B

 $\underline{A \equiv B}$ *A* if and only if *B A* iff *B A* when and only when *B*

DEFINITION (DISJUNCTIVE NORMAL FORM)

A sentence is in **disjunctive normal form** iff it is the disjunction of conjunctions of atomic and negated atomic sentences.

Example:

" $(-p \cdot -q \cdot r) \vee (-p \cdot q \cdot -r) \vee (p \cdot q \cdot r)$ " is in disjunctive normal form. " $((-p \vee -q \vee r) \cdot (-p \vee q \cdot -r)) \vee -(p \cdot q \cdot r)$ " is not.

THEOREM

Any (truth-functional) connective you can define can be redefined using '–', ' . ', and ' \lor ' in disjunctive normal form.

▶ **PROOF (IDEA):** As in section: Conjoin the atomics and negated atomics for each \top -row, and then disjoin each of these conjuncts. Example, define a tertiary connective ∇ as follows:

p	q	r	$\nabla(p,q,r)$	In this case, " $\nabla(p,q,r)$ " is equivalent to
Т	Т	T	\perp	$(pqr) \lor (-p . qr) \lor (-pqr)$ ".
Т	Т	$ \perp $	\perp	
Т	\perp	T	1	
Т	\bot		Т	
\perp	Т	_		
T	Т		Т	
	Ī			
	-			_

¹ This is a weird case. Ordinary English often translates "just in case" or "just in the case where" as " \supset ", but also sometimes as " \equiv ". In fact, mathematicians and philosophers often translate them as " \equiv ". Similarly, mathematicians also say "if" instead of "if and only if" when defining new terminology.

COROLLARY

Any (truth-functional) sentence can be written in disjunctive normal form.

▶ **PROOF (IDEA):** If *A* is a sentence, write out its truth table. Then construct a sentence in disjunctive normal form with the same truth table, as above.