
Logical Consequence: Semantics

1 Truth Assignments

DEFINITION 1 (TRUTH ASSIGNMENT)

A truth assignment (i.e. an interpretation) is a function which takes a
schema as input (including the atomic sentences “p”, “q”, “r”, . . . ) and as-
signs that schema to exactly one truth value.

If v is a truth assignment, it must satisfy these rules (for all A and B):

vp´Aq “ J iff vpAq “ K
vpA . Bq “ J iff both vpAq “ J and vpBq “ J

vpA_ Bq “ J iff either vpAq “ J or vpBq “ J
vpA Ą Bq “ J iff either vpAq “ K or vpBq “ J
vpA ” Bq “ J iff vpAq “ vpBq

Informally: truth assignments are “ways the world could be.”
Formally: truth assignments are just rows in a truth table.
The definition above can be formulated equally well in terms of which schemata

v assigns K. For instance: vpA Ą Bq “ K iff both vpAq “ J and vpBq “ K.

EXERCISE 2

Fill in the blanks:

vp´Aq “ K iff
vpA . Bq “ K iff

vpA_ Bq “ K iff
vpA Ą Bq “ K iff
vpA ” Bq “ K iff
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G OBSERVATION: What’s the point of all this? Now you have three ways to
determine when a complex TF-schema A is true:

(1) Write down a truth table for A (tedious).

(2) Use the equivalences from the previous handout or write the schema in
disjunctive normal form.

(3) Determine what truth assignments make A true.

EXAMPLE 3

When is the schema “´pp _ pq Ą pqq” true? That is, under what interpreta-
tions of “p” and “q” is this schema true? Using the rules above, we reason as
follows:

v p´pp_ pq Ą pqqq “ J iff vpp_ pq Ą pqq “ K
iff both vppq “ K and vpq Ą pq “ K
iff both vppq “ K and vpqq “ J and vppq “ K
iff both vppq “ K and vpqq “ J

Hence, the schema “´pp _ pq Ą pqq” is true when both “p” is false and “q” is
true; otherwise, the schema is false.

When is the schema false? Well:

v p´pp_ pq Ą pqqq “ K iff vpp_ pq Ą pqq “ J
iff either vppq “ J or vpq Ą pq “ J
iff either vppq “ J or vpqq “ K or vppq “ J
iff either vppq “ J or vpqq “ K

Hence the schema is false when either “p” is true or “q” is false; otherwise, it
is true. Notice this is consistent with our previous answer.
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EXERCISE 4

Try out “´pp . pp Ą qqq _ ´q”:

v p´pp . pp Ą qqq _ ´qq “ J iff

2 Satisfiability

DEFINITION 5 (SATISFIABILITY)

When a schema A is given the value J under at least one truth assignment,
we say A is satisfiable. Otherwise, we say A is unsatisfiable.

EXAMPLE 6

“´pp _ pq Ą pqq” is satisfiable: at least one interpretation makes it true, viz.
one where vppq “ K and vpqq “ J.

EXAMPLE 7

“´pp Ą qq . ´ pq Ą pq” is unsatisfiable:

v p´pp Ą qq . ´ pq Ą pqq “ J iff both v p´pp Ą qqq “ J and vp´pq Ą pqq “ J
iff both vpp Ą qq “ K and vpq Ą pq “ K
iff both vppq “ J and vpqq “ K, and moreover

both vpqq “ J and vppq “ K

But this can never happen: v can only assign “p” to one truth value (similarly
for “q”). So “´pp Ą qq . ´ pq Ą pq” is unsatisfiable. (Weird, huh?)
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3 Validity

DEFINITION 8 (VALIDITY)

When a schema A is true under every truth assignment, we say A is valid, or
that A is a tautology.

� NOTATION: If A is valid, we may write “( A” to indicate this. If A is
not valid (i.e. if A is false on some truth assignment), we may write “* A”
instead.

� WARNING � * A does not mean ( ´A. For instance, let A = “p”.

EXAMPLE 9

“p_ pp Ą qq” is valid:

vpp_ pp Ą qqq “ J iff either vppq “ J or vpp Ą qq “ J
iff either vppq “ J or vppq “ K or vpqq “ J

But this will always happen: v must alway assign “p” to some truth value. So,
“p_ pp Ą qq” is valid. (Weird, huh?)

4 Implication

DEFINITION 10 (IMPLICATION)

We say A implies B (or A entails B) if and only if every truth assignment v
where vpAq “ J is also a truth assignment where vpBq “ J. That is, A implies
B if and only if there is no truth assignment v where vpAq “ J but vpBq “ K.

If A implies B, A is a premise and B is a conclusion.

� NOTATION: We write “A ( B” to mean “A implies B.” When A doesn’t
imply B, we write “A * B.”
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� WARNING � A * B does not mean A ( ´B. For instance, let A = “p”
and B = “q.”

e COMMENT: There are two ways to show that A ( B using truth assign-
ments:

(i) Going Forward: Supposing vpAq “ J, show it must be that vpBq “ J.

(ii) Going Backward: Supposing vpBq “ K, show it must be that vpAq “ K.

EXAMPLE 11 (GOING FORWARD)

p . pq_ rq ( pp . qq _ pp . rq:

Suppose vpp . pq_ rqq “ J. We know that:

vpp . pq_ rqq “ J iff both vppq “ J and vpq_ rq “ J
iff both vppq “ J and either vpqq “ J or vprq “ J

So vppq “ J, and either vpqq “ J or vprq “ J. We want to show from this
that vppp . qq _ pp . rqq “ J. But:

vppp . qq _ pp . rqq “ J iff either vpp . qq “ J or vpp . rq “ J
iff either both vppq “ J and vpqq “ J or else

both vppq “ J and vprq “ J

So we must show that either vppq “ vpqq “ J, or vppq “ vprq “ J, given
what we already know about v. We already know that vppq “ J, and we
know that either vpqq “ J or vprq “ J.

• Suppose that vpqq “ J. Since we know that vppq “ J, we can infer
from this that both vppq “ J and vpqq “ J. Hence, vppp . qq _ pp . rqq “
J.

• Suppose instead vprq “ J. Again, since we know that vppq “ J, we can
infer that both vppq “ J and vprq “ J. Hence, vppp . qq _ pp . rqq “ J.

So either way, we have vppp . qq _ pp . rqq “ J.
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EXAMPLE 12 (GOING BACKWARD)

p . pq_ rq ( pp . qq _ pp . rq: (same problem)

Suppose vppp . qq _ pp . rqq “ K. We know that:

vppp . qq _ pp . rqq “ K iff both vpp . qq “ K and vpp . rq “ K
iff either vppq “ K or vpqq “ K, and moreover

either vppq “ K or vprq “ K

So either vppq “ K or vpqq “ K. Furthermore, either vppq “ K or vprq “ K.
We want to show from this that vpp . pq_ rqq “ K. But:

vpp . pq_ rqq “ K iff either vppq “ K or vpq_ rq “ K
iff either vppq “ K or

both vpqq “ K and vprq “ K

So we must show that either vppq “ K, or else both vpqq “ K and vprq “ K.
Apart from the above, we know (trivially) that either vppq “ J or vppq “ K.

• Suppose vppq “ K. Then we can infer that either vppq “ K or both
vpqq “ K and vprq “ K. So vpp . pq_ rqq “ K.

• Suppose vppq “ J. Since we know that either vppq “ K or vpqq “ K,
we can infer vpqq “ K. Similarly, since we know that either vppq “ K
or vpqq “ K, we can infer vprq “ K. So both vpqq “ K and vprq “ K.
But from this, we can infer that either vppq “ K or both vpqq “ K and
vprq “ K. So vpp . pq_ rqq “ K.

So either way, we have vpp . pq_ rqq “ K.

e COMMENT: Showing that A * B is less systematic. To show A * B, one
must find a counter-example, i.e. an interpretation where A is true but B is
false.
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EXAMPLE 13 (COUNTER-EXAMPLE)

p Ą q * pp_ rq Ą q. Consider the following truth assignment:

vppq “ K
vpqq “ K
vprq “ J

According to this truth assignment, vpp Ą qq “ J. But vpp _ rq “ J, since
vprq “ J, and yet vpqq “ K. So vppp_rq Ą qq “ K. Hence, p Ą q * pp_rq Ą q.

5 Generalized Implication

DEFINITION 14 (GENERALIZED IMPLICATION)

Let A1, . . . , An, B all be schemata. We say that A1, . . . , An imply B if and only
if every truth assignment v where vpA1q “ vpA2q “ ¨ ¨ ¨ “ vpAnq “ J, is
also a truth assignment where vpBq “ J. If A1, . . . , An imply B, we write
A1, . . . , An ( B.

LEMMA 15

A1, . . . , An ( B if and only if pA1 . pA2 . pA3 . ¨ ¨ ¨ . Anq ¨ ¨ ¨ q ( B (i.e. if and only
if the iterated conjunction of A1, . . . , An implies B).

6 Equivalence

DEFINITION 16 (EQUIVALENCE)

We say that A and B are equivalent if and only if A and B are given the same
truth value for any truth assignment. That is, A and B are equivalent if and
only if for every truth assignment v, vpAq “ vpBq.

� NOTATION: We sometimes write “A )( B” to mean “A is equivalent to
B.” But we also sometimes write “A ô B.”
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LEMMA 17

A )( B if and only if both A ( B and B ( A.

! REMARK: Although the notation ‘)(’ is suggestive, we cannot just
assume that this Lemma is true. We must prove it. Thankfully, the proof isn’t
that complex.

d PROOF:

(“only if” part)

Suppose A )( B. Then for every truth assignment v, vpAq “ vpBq.
So if vpAq “ J, then vpBq “ J; hence A ( B. Similarly, if vpBq “ J, then
vpAq “ J; hence B ( A.

(“if” part)

Suppose A ( B and B ( A. If vpAq ‰ vpBq, then either vpAq “ J and
vpBq “ K, or vice versa. But if vpAq “ J and vpBq “ K, then A * B,
contrary to supposition. Similarly, if vpBq “ J and vpAq “ K, then
B * A, again contrary to supposition. So it can’t be that vpAq ‰ vpBq.
Thus A )( B.

7 Implication vs. Conditional

Logical implication “(” isn’t the same as the conditional “Ą.” For one, “A Ą B” is a
schema, whereas “A ( B” is a relation between schemata. For another, if “A ( B”
is true, then so is “A Ą B”; but even if “A Ą B” is true, it doesn’t follow that “A ( B”
is true. Consider:

“If Mal is the captain of Serenity, then he is a good captain.”

This may be true, but it’s not as though “Mal is the captain of Serenity” logically
implies “Mal is a good captain.” It is logically possible, after all, that Mal is a bad
captain, even if he is captain of Serenity. Similarly,

“If Joey studies, then he’ll pass.”

may be just so happen to be true (because Joey happens to be a smart fellow),
but it’s certainly possible to imagine a scenario where Joey studies but doesn’t
pass. Thus, one should never read “A Ą B” as “A implies B” or “A entails B.”
Similar remarks hold about reading the material biconditional “A ” B” as “A
is equivalent to B.”
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Despite all that, ‘(’ and ‘Ą’ do have a close connection to one another.

THEOREM 18 (DEDUCTION THEOREM)

Let A and B be schemata. Then A ( B if and only if ( pA Ą Bq.

THEOREM 19 (GENERALIZED DEDUCTION THEOREM)

More generally, if A1, . . . , An, B are schemata, then A1, . . . , An ( B if and only
if A1, . . . , An´1 ( pAn Ą Bq.

e COMMENT: What the Deduction Theorem shows is that there’s still a
strong connection between logical implication and the material conditional.
The theorem says that “A implies B” if and only if “A Ą B” is valid, i.e. if
and only if “A Ą B” is a logical truth. So while the material conditional
doesn’t express implication, there’s a sense in which the material conditional
still indicates it. This is what Goldfarb is referring to with the use/mention
distinction for logical entailment.
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