Logical Consequence: Semantics

1 Truth Assignments

DEFINITION 1 (TRUTH ASSIGNMENT)

A <u>truth assignment</u> (i.e. an <u>interpretation</u>) is a function which takes a schema as input (including the atomic sentences "p", "q", "r", ...) and assigns that schema to exactly one truth value.

If v is a truth assignment, it must satisfy these rules (for all A and B):

 $v(-A) = \top \quad \text{iff} \quad v(A) = \bot$ $v(A \cdot B) = \top \quad \text{iff} \quad \text{both } v(A) = \top \text{ and } v(B) = \top$ $v(A \vee B) = \top \quad \text{iff} \quad \text{either } v(A) = \top \text{ or } v(B) = \top$ $v(A \supset B) = \top \quad \text{iff} \quad \text{either } v(A) = \bot \text{ or } v(B) = \top$ $v(A \equiv B) = \top \quad \text{iff} \quad v(A) = v(B)$

Informally: truth assignments are "ways the world could be." *Formally*: truth assignments are just rows in a truth table.

The definition above can be formulated equally well in terms of which schemata v assigns \bot . For instance: $v(A \supset B) = \bot$ iff both $v(A) = \top$ and $v(B) = \bot$.

Exercise 2	
Fill in the blanks:	
$v(-A) = \bot$	iff
$v(A \cdot B) = \bot$	iff
$v(A \lor B) = \bot$	iff
$\nu(A \supset B) = \bot$	iff
$\nu(A \equiv B) = \bot$	iff

CBSERVATION: What's the point of all this? Now you have *three* ways to determine when a complex TF-schema A is true:

- (1) Write down a truth table for *A* (tedious).
- (2) Use the equivalences from the previous handout or write the schema in disjunctive normal form.
- (3) Determine what truth assignments make *A* true.

EXAMPLE 3

When is the schema " $-(p \lor (q \supset p))$ " true? That is, under what interpretations of "p" and "q" is this schema true? Using the rules above, we reason as follows:

 $\begin{array}{ll} v\left(-(p \lor (q \supset p))\right) = \top & \text{iff} \quad v(p \lor (q \supset p)) = \bot \\ & \text{iff} \quad \text{both } v(p) = \bot \text{ and } v(q \supset p) = \bot \\ & \text{iff} \quad \text{both } v(p) = \bot \text{ and } v(q) = \top \text{ and } v(p) = \bot \\ & \text{iff} \quad \text{both } v(p) = \bot \text{ and } v(q) = \top \end{array}$

Hence, the schema " $-(p \lor (q \supset p))$ " is true when both "p" is false and "q" is true; otherwise, the schema is false.

When is the schema false? Well:

$$v(-(p \lor (q \supset p))) = \bot \quad \text{iff} \quad v(p \lor (q \supset p)) = \top$$

iff either $v(p) = \top \text{ or } v(q \supset p) = \top$
iff either $v(p) = \top \text{ or } v(q) = \bot \text{ or } v(p) = \top$
iff either $v(p) = \top \text{ or } v(q) = \bot$

Hence the schema is false when either "p" is true or "q" is false; otherwise, it is true. Notice this is consistent with our previous answer.

EXERCISE 4

Try out " $-(p \cdot (p \supset q)) \lor -q$ ":

 $v(-(p \cdot (p \supset q)) \lor -q) = \top$ iff

2 Satisfiability

DEFINITION 5 (SATISFIABILITY)

When a schema *A* is given the value \top under *at least one* truth assignment, we say *A* is **satisfiable**. Otherwise, we say *A* is **unsatisfiable**.

EXAMPLE 6

"- $(p \lor (q \supset p))$ " is satisfiable: at least one interpretation makes it true, viz. one where $v(p) = \bot$ and $v(q) = \top$.

EXAMPLE 7

"- $(p \supset q)$. - $(q \supset p)$ " is unsatisfiable:

 $v(-(p \supset q) \cdot -(q \supset p)) = \top \quad \text{iff} \quad \text{both } v(-(p \supset q)) = \top \text{ and } v(-(q \supset p)) = \top$ $\text{iff} \quad \text{both } v(p \supset q) = \bot \text{ and } v(q \supset p) = \bot$ $\text{iff} \quad \text{both } v(p) = \top \text{ and } v(q) = \bot, \text{ and moreover}$ $\text{both } v(q) = \top \text{ and } v(p) = \bot$

But this can never happen: *v* can only assign "*p*" to *one* truth value (similarly for "*q*"). So " $-(p \supset q)$. $-(q \supset p)$ " is unsatisfiable. (Weird, huh?)

3 Validity

DEFINITION 8 (VALIDITY)

When a schema A is true under *every* truth assignment, we say A is **valid**, or that A is a **tautology**.

NOTATION: If A is valid, we may write "⊨ A" to indicate this. If A is not valid (i.e. if A is false on some truth assignment), we may write "⊭ A" instead.

WARNING \downarrow $\not\models$ *A* does *not* mean \models *-A*. For instance, let *A* = "*p*".

EXAMPLE 9

" $p \lor (p \supset q)$ " is valid:

 $v(p \lor (p \supset q)) = \top \quad \text{iff} \quad \text{either } v(p) = \top \text{ or } v(p \supset q) = \top$ $\text{iff} \quad \text{either } v(p) = \top \text{ or } v(p) = \bot \text{ or } v(q) = \top$

But this will always happen: v must *alway* assign "p" to *some* truth value. So, " $p \lor (p \supset q)$ " is valid. (Weird, huh?)

4 Implication

DEFINITION 10 (IMPLICATION)

We say *A* **implies** *B* (or *A* **entails** *B*) if and only if every truth assignment *v* where $v(A) = \top$ is also a truth assignment where $v(B) = \top$. That is, *A* implies *B* if and only if there is no truth assignment *v* where $v(A) = \top$ but $v(B) = \bot$. If *A* implies *B*, *A* is a **premise** and *B* is a **conclusion**.

Imply B, we write "*A* \models *B*" to mean "*A* implies *B*." When *A* doesn't imply *B*, we write "*A* $\not\models$ *B*."

WARNING $A \not\models B$ does not mean $A \models -B$. For instance, let A = "p" and B = "q."

• COMMENT: There are two ways to show that $A \models B$ using truth assignments:

- (i) *Going Forward*: Supposing $v(A) = \top$, show it must be that $v(B) = \top$.
- (ii) **Going Backward**: Supposing $v(B) = \bot$, show it must be that $v(A) = \bot$.

EXAMPLE 11 (GOING FORWARD)

 $p \cdot (q \vee r) \vDash (p \cdot q) \vee (p \cdot r):$

Suppose $v(p \cdot (q \lor r)) = \top$. We know that:

$$v(p \cdot (q \lor r)) = \top$$
 iff both $v(p) = \top$ and $v(q \lor r) = \top$
iff both $v(p) = \top$ and either $v(q) = \top$ or $v(r) = \top$

So $v(p) = \top$, and either $v(q) = \top$ or $v(r) = \top$. We want to show from this that $v((p \cdot q) \lor (p \cdot r)) = \top$. But:

 $v((p \cdot q) \lor (p \cdot r)) = \top \quad \text{iff} \quad \text{either } v(p \cdot q) = \top \text{ or } v(p \cdot r) = \top$ $\text{iff} \quad \text{either both } v(p) = \top \text{ and } v(q) = \top \text{ or else}$ $\text{both } v(p) = \top \text{ and } v(r) = \top$

So we must show that either $v(p) = v(q) = \top$, or $v(p) = v(r) = \top$, given what we already know about *v*. We already know that $v(p) = \top$, and we know that either $v(q) = \top$ or $v(r) = \top$.

- **Suppose that** $v(q) = \top$. Since we know that $v(p) = \top$, we can infer from this that both $v(p) = \top$ and $v(q) = \top$. Hence, $v((p \cdot q) \lor (p \cdot r)) = \top$.
- **Suppose instead** $v(r) = \top$. Again, since we know that $v(p) = \top$, we can infer that both $v(p) = \top$ and $v(r) = \top$. Hence, $v((p \cdot q) \lor (p \cdot r)) = \top$.

So either way, we have $v((p \cdot q) \lor (p \cdot r)) = \top$.

EXAMPLE 12 (GOING BACKWARD)

 $p \cdot (q \lor r) \vDash (p \cdot q) \lor (p \cdot r)$: (same problem)

Suppose $v((p \cdot q) \lor (p \cdot r)) = \bot$. We know that:

 $v((p \cdot q) \lor (p \cdot r)) = \bot \quad \text{iff} \quad \text{both } v(p \cdot q) = \bot \text{ and } v(p \cdot r) = \bot$ iff $\quad \text{either } v(p) = \bot \text{ or } v(q) = \bot, \text{ and moreover}$ either $v(p) = \bot \text{ or } v(r) = \bot$

So either $v(p) = \bot$ or $v(q) = \bot$. Furthermore, either $v(p) = \bot$ or $v(r) = \bot$. We want to show from this that $v(p \cdot (q \lor r)) = \bot$. But:

 $v(p . (q \lor r)) = \bot \quad \text{iff} \quad \text{either } v(p) = \bot \text{ or } v(q \lor r) = \bot$ $\text{iff} \quad \text{either } v(p) = \bot \text{ or}$ $\text{both } v(q) = \bot \text{ and } v(r) = \bot$

So we must show that either $v(p) = \bot$, or else both $v(q) = \bot$ and $v(r) = \bot$. Apart from the above, we know (trivially) that either $v(p) = \top$ or $v(p) = \bot$.

- **Suppose** $v(p) = \bot$. Then we can infer that either $v(p) = \bot$ or both $v(q) = \bot$ and $v(r) = \bot$. So $v(p \cdot (q \lor r)) = \bot$.
- **Suppose** $v(p) = \top$. Since we know that either $v(p) = \bot$ or $v(q) = \bot$, we can infer $v(q) = \bot$. Similarly, since we know that either $v(p) = \bot$ or $v(q) = \bot$, we can infer $v(r) = \bot$. So both $v(q) = \bot$ and $v(r) = \bot$. But from this, we can infer that either $v(p) = \bot$ or both $v(q) = \bot$ and $v(r) = \bot$.

So either way, we have $v(p \cdot (q \lor r)) = \bot$.

• <u>COMMENT</u>: Showing that $A \not\models B$ is less systematic. To show $A \not\models B$, one must find a *counter-example*, i.e. an interpretation where A is true but B is false.

EXAMPLE 13 (COUNTER-EXAMPLE)

 $p \supset q \not\models (p \lor r) \supset q$. Consider the following truth assignment:

 $v(p) = \bot$ $v(q) = \bot$ $v(r) = \top$

According to this truth assignment, $v(p \supset q) = \top$. But $v(p \lor r) = \top$, since $v(r) = \top$, and yet $v(q) = \bot$. So $v((p \lor r) \supset q) = \bot$. Hence, $p \supset q \nvDash (p \lor r) \supset q$.

5 Generalized Implication

DEFINITION 14 (GENERALIZED IMPLICATION)

Let A_1, \ldots, A_n, B all be schemata. We say that A_1, \ldots, A_n **imply** *B* if and only if every truth assignment *v* where $v(A_1) = v(A_2) = \cdots = v(A_n) = \top$, is also a truth assignment where $v(B) = \top$. If A_1, \ldots, A_n imply *B*, we write $A_1, \ldots, A_n \models B$.

LEMMA 15

 $A_1, \ldots, A_n \models B$ if and only if $(A_1 \cdot (A_2 \cdot (A_3 \cdot \cdots \cdot A_n) \cdots) \models B$ (i.e. if and only if the iterated conjunction of A_1, \ldots, A_n implies B).

6 Equivalence

DEFINITION 16 (EQUIVALENCE)

We say that *A* and *B* are **equivalent** if and only if *A* and *B* are given the same truth value for any truth assignment. That is, *A* and *B* are equivalent if and only if for every truth assignment v, v(A) = v(B).

NOTATION: We sometimes write " $A \rightrightarrows \models B$ " to mean "A is equivalent to **B**." But we also sometimes write " $A \Leftrightarrow B$."

LEMMA 17

 $A \models B$ if and only if both $A \models B$ and $B \models A$.

<u>REMARK</u>: Although the notation ' $\exists \vDash$ ' is suggestive, we cannot just *assume* that this Lemma is true. We must prove it. Thankfully, the proof isn't that complex.

► PROOF:

("only if" part)

Suppose $A \rightleftharpoons B$. Then for every truth assignment v, v(A) = v(B). So if $v(A) = \top$, then $v(B) = \top$; hence $A \models B$. Similarly, if $v(B) = \top$, then $v(A) = \top$; hence $B \models A$.

("if" part)

Suppose $A \models B$ and $B \models A$. If $v(A) \neq v(B)$, then either $v(A) = \top$ and $v(B) = \bot$, or vice versa. But if $v(A) = \top$ and $v(B) = \bot$, then $A \not\models B$, contrary to supposition. Similarly, if $v(B) = \top$ and $v(A) = \bot$, then $B \not\models A$, again contrary to supposition. So it can't be that $v(A) \neq v(B)$. Thus $A \models B$.

7 Implication vs. Conditional

Logical implication " \models " isn't the same as the conditional " \supset ." For one, " $A \supset B$ " is a schema, whereas " $A \models B$ " is a relation between schemata. For another, if " $A \models B$ " is true, then so is " $A \supset B$ "; but even if " $A \supset B$ " is true, it doesn't follow that " $A \models B$ " is true. Consider:

"If Mal is the captain of Serenity, then he is a good captain."

This may be true, but it's not as though "Mal is the captain of Serenity" *logically implies* "Mal is a good captain." It is logically possible, after all, that Mal is a bad captain, even if he is captain of Serenity. Similarly,

"If Joey studies, then he'll pass."

may be *just so happen* to be true (because Joey happens to be a smart fellow), but it's certainly possible to imagine a scenario where Joey studies but doesn't pass. Thus, one should never read " $A \supset B$ " as "A implies B" or "A entails B." Similar remarks hold about reading the material biconditional " $A \equiv B$ " as "A is equivalent to B."

Despite all that, ' \models ' and ' \supset ' *do* have a close connection to one another.

THEOREM 18 (DEDUCTION THEOREM)

Let *A* and *B* be schemata. Then $A \models B$ if and only if $\models (A \supset B)$.

THEOREM 19 (GENERALIZED DEDUCTION THEOREM)

More generally, if A_1, \ldots, A_n, B are schemata, then $A_1, \ldots, A_n \models B$ if and only if $A_1, \ldots, A_{n-1} \models (A_n \supset B)$.

• **COMMENT:** What the Deduction Theorem shows is that there's still a strong connection between logical implication and the material conditional. The theorem says that "A implies B" if and only if " $A \supset B$ " is valid, i.e. if and only if " $A \supset B$ " is a logical truth. So while the material conditional doesn't express implication, there's a sense in which the material conditional still *indicates* it. This is what Goldfarb is referring to with the use/mention distinction for logical entailment.