Properties of Implication

Legend			
Symbols	English	Symbols	English
$A \models B$	A implies B	$A \models$	A is unsatisfiable
$A \not\models B$	A doesn't imply B	$A \not\models$	A is satisfiable
$\models A$	A is valid	$A \Leftrightarrow B$	A is equivalent to B
$\not\models A$	A is not valid	$A \rightleftharpoons \models B$	دد ۲۲ د د ۲۲

Properties of \models :

Reflexivity: $A \models A$

Transitivity:

If $A \models B$ and $B \models C$, then $A \models C$ If $\models A$ and $A \models B$, then $\models B$ If $B \models$ and $A \models B$, then $A \models$

Collapse:

 $A_1,\ldots,A_n \models B$ iff $(A_1 \ldots A_n) \models B$

Contraposition:

 $\begin{array}{rrrr} A \vDash B & \text{iff} & -B \vDash -A \\ \vDash A & \text{iff} & -A \vDash \\ A \vDash & \text{iff} & \vDash -A \end{array}$

Weakening: If $\models A$, then $B \models A$ (for any B)

Explosion: If $A \models$, then $A \models B$ (for any *B*)

Properties of \Leftrightarrow :

Reflexivity: $A \Leftrightarrow A$

Transitivity: If $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$

Symmetry: If $A \Leftrightarrow B$, then $B \Leftrightarrow A$

Contraposition $A \Leftrightarrow B$ iff $-A \Leftrightarrow -B$

Double Implication: $A \Leftrightarrow B$ iff both $A \models B$ and $B \models A$

Validity & Unsatisfiability: If $\models A$, then: $A \Leftrightarrow B$ iff

If $\models A$, then: $A \Leftrightarrow B$ iff $\models B$ If $A \models$, then: $A \Leftrightarrow B$ iff $B \models$

DEFINITION 1 (SUBSTITUTION)

Suppose *S* is a schema. Then *S* [A / B] is the schema we obtain by replacing every instance of the schema *A* in *S* with the schema *B*. This is called **substitution**.

THEOREM 2 (SUBSTITUTING SENTENCE LETTERS WITH SCHEMATA)

Substitution of schemata for sentence letters preserves validity, unsatisfiability, implication, and equivalence. That is, for any schemata *A*, *B*, *S*, and any sentence letter *p*:

- (i) if $\models A$, then $\models A [p / S]$ (validity preserved)
- (ii) if $A \models$, then $A[p / S] \models$ (unsatisfiability preserved)
- (iii) If $A \models B$, then $A[p / S] \models B[p / S]$ (implication preserved)
- (iv) If $A \Leftrightarrow B$, then $A[p / S] \Leftrightarrow B[p / S]$ (equivalence preserved)

WARNING: Satisfiability is *not* preserved under this substitution. For instance, $A = "p \cdot q"$ is satisfiable; but $A[p / -q] = "-q \cdot q"$ is not satisfiable.

THEOREM 3 (SUBSTITUTING SCHEMATA WITH EQUIVALENTS) The following holds for any schemata *A*, *B*, *S*, *T*:

- (a) Substitution of schemata for equivalent schemata produces equivalent schemata. That is, if $A \Leftrightarrow B$, then $S \Leftrightarrow S [A / B]$.
- (b) Substitution of schemata for equivalent scehemata preserves validity, unsatisfiability, implication, equivalence, *and* satisfiability. That is, if $S \Leftrightarrow T$:
 - (i) if $\models A$, then $\models A [S / T]$
 - (ii) if $A \models$, then $A[S / T] \models$
 - (iii) if $A \models B$, then $A[S / T] \models B[S / T]$
 - (iv) if $A \Leftrightarrow B$, then $A[S / T] \Leftrightarrow B[S / T]$
 - (v) if A is satisfiable, then so is A[S / T]

OBSERVATION: One can also do multiple substitutions *simultaneousy*. For instance, we could take " $p \cdot q$ " and replace both sentences letters at the same time with different schemata, e.g. " $(q \lor r) \cdot (p \supset s)$ ". Allowing ourselves to do this does not affect the above.