Properties of Implication

Legend			
Symbols	English	Symbols	English
$A \models B$	A implies B	$A \models$	A is unsatisfiable
$A \not\models B$	A doesn't imply B	$A \not\models$	A is satisfiable
$\models A$	A is valid	$A \Leftrightarrow B$	A is equivalent to B
$\not\models A$	A is not valid	$A = \models B$	" " " "

Properties of \models :

Reflexivity:

 $A \models A$

Transitivity:

If $A \models B$ and $B \models C$, then $A \models C$ If $\models A$ and $A \models B$, then $\models B$

If $B \models \text{and } A \models B$, then $A \models$

Collapse:

 $A_1, \ldots, A_n \models B \text{ iff } (A_1 \ldots A_n) \models B$

Contraposition:

 $A \models B$ iff $-B \models -A$ $\models A$ iff $-A \models$ $A \models$ iff $\models -A$

Weakening:

If $\models A$, then $B \models A$ (for any B)

Explosion:

If $A \models$, then $A \models B$ (for any B)

Properties of \Leftrightarrow :

Reflexivity:

 $A \Leftrightarrow A$

Transitivity:

If $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$

Symmetry:

If $A \Leftrightarrow B$, then $B \Leftrightarrow A$

Contraposition

 $A \Leftrightarrow B \text{ iff } -A \Leftrightarrow -B$

Double Implication:

 $A \Leftrightarrow B$ iff both $A \models B$ and $B \models A$

Validity & Unsatisfiability:

If $\models A$, then: $A \Leftrightarrow B$ iff $\models B$ If $A \models$, then: $A \Leftrightarrow B$ iff $B \models$

DEFINITION 1 (SUBSTITUTION)

Suppose *S* is a schema. Then S[A/B] is the schema we obtain by replacing every instance of the schema *A* in *S* with the schema *B*. This is called **substitution**.

THEOREM 2 (SUBSTITUTING SENTENCE LETTERS WITH SCHEMATA)

Substitution of schemata for sentence letters preserves validity, unsatisfiability, implication, and equivalence. That is, for any schemata A, B, S, and any sentence letter p:

- (i) if $\models A$, then $\models A \lceil p / S \rceil$ (validity preserved)
- (ii) if $A \models$, then $A \lceil p / S \rceil \models$ (unsatisfiability preserved)
- (iii) If $A \models B$, then $A[p/S] \models B[p/S]$ (implication preserved)
- (iv) If $A \Leftrightarrow B$, then $A[p/S] \Leftrightarrow B[p/S]$ (equivalence preserved)

WARNING Satisfiability is *not* preserved under this substitution. For instance, $A = {}^{\circ}p \cdot q^{\circ}$ is satisfiable; but $A [p / -q] = {}^{\circ}-q \cdot q^{\circ}$ is not satisfiable.

THEOREM 3 (SUBSTITUTING SCHEMATA WITH EQUIVALENTS)

The following holds for any schemata A, B, S, T:

- (a) Substitution of schemata for equivalent schemata produces equivalent schemata. That is, if $A \Leftrightarrow B$, then $S \Leftrightarrow S [A / B]$.
- (b) Substitution of schemata for equivalent scehemata preserves validity, unsatisfiability, implication, equivalence, *and* satisfiability. That is, if $S \Leftrightarrow T$:
 - (i) if $\models A$, then $\models A [S / T]$
 - (ii) if $A \models$, then $A[S / T] \models$
 - (iii) if $A \models B$, then $A \lceil S \mid T \rceil \models B \lceil S \mid T \rceil$
 - (iv) if $A \Leftrightarrow B$, then $A[S / T] \Leftrightarrow B[S / T]$
 - (v) if A is satisfiable, then so is $A[S \mid T]$

***** OBSERVATION: One can also do multiple substitutions *simultaneousy*. For instance, we could take "p . q" and replace both sentences letters at the same time with different schemata, e.g. " $(q \lor r)$. $(p \supset s)$ ". Allowing ourselves to do this does not affect the results above.