Worksheet 5 — April 11

1. For each schema below, use the set $\{1,2,3\}$ as your UD. In each case: (a) find an interpretation that makes the schema true, (b) find an interpretation that makes the schema false, and (c) draw an arrow diagram of each interpretation. You *cannot* assign R to \emptyset .

(i) $\exists x \forall y (Ryx \supset Ryy)$

(iv) $\exists x \exists y (Rxy . Ryx) . \forall x \forall y (\exists z (Rxz . Rzy) \supset Rxy)$

(ii) $\forall x \forall y (\exists z (Rxz . Ryz) \supset Rxy)$

(v) $\exists x \forall y Rxy . \forall x (\forall y Rxy \supset \forall y Ryx)$

(iii) $\forall x \forall y (Rxy \supset \exists z (Rxz . Rzy))$

(vi) $\forall x \forall y Rxy$

- 2. Let v be an interpretation of a binary predicate R. We say that R on v is:
 - **reflexive** if " $\forall xRxx$ " is true
 - **irreflexive** if " $\forall x Rxx$ " is true
 - **symmetric** if " $\forall x \forall y (Rxy \supset Ryx)$ " is true
 - **asymmetric** if " $\forall x \forall y (Rxy \supset -Ryx)$ " is true
 - **antisymmetric** if " $\forall x \forall y (Rxy . Ryx \supset x = y)$ " is true¹
 - **transitive** if " $\forall x \forall y \forall z (Rxy . Ryz \supset Rxz)$ " is true
 - **euclidean** if " $\forall x \forall y (\exists z (Rzx . Rzy) \supset Rxy)$ " is true

Find a counterexample to each implication below. You may either give an interpretation or draw an arrow diagram. (These can all be done with $UD = \{1, 2, 3\}$)

(i) $symmetric \Rightarrow reflexive$

(iii) euclidean ⇒ symmetric

(ii) antisymmetric \Rightarrow asymmetric

(iv) symmetric + transitive ⇒ reflexive

- 3. Argue for the following.
 - (i) antisymmetric + irreflexive \Rightarrow asymmetric

reflexive + euclidean

(ii) asymmetric \Rightarrow antisymmetric

(iv) transitive + irreflexive ⇒ asymmetric

(iii) reflexive + symmetric + transitive ⇔

 $^{^{1}}$ The interpretation of "=" is fixed: it is always the identity relation on any interpretation.