Sets, Relations, and Functions

Phil 143 Handout

§1 Basic Definitions and Notation

Sets are denoted with curly braces, {...}. Examples:

- $\{a,b,c\}$
- $\{1, 2, 6, 108\}$
- {Arc, Wes, 4, the color blue}
- $\{a, b, \{a, b\}\}$
- $\{n \mid n \text{ is an even number}\} = \{0, 2, 4, 6, \ldots\}$

Read '{ $x | \phi(x)$ }' as denoting the set of all *x* such that $\phi(x)$. Notice that by the fourth example, sets can be members of other sets.

Ordered pairs are denoted with angle brackets, $\langle a, b \rangle$. In general, ordered *n*-tuples are written as $\langle a_1, \ldots, a_n \rangle$.

- For sets, neither order nor repetition matter. So e.g., $\{a, a, b\} = \{a, b\} = \{b, a\}$.
- For orderd *n*-tuples, both order and repetition matter. So $\langle a, a, b \rangle \neq \langle a, b \rangle \neq \langle b, a \rangle$.

Concept	Symbol	Meaning
x is in A	$x \in A$	<i>x</i> is a member of <i>A</i>
A and B are the same set	A = B	$\forall x \colon x \in A \text{ iff } x \in B$
A is a subset of B	$A \subseteq B$	$\forall x : \text{ if } x \in A \text{, then } x \in B$
A is a proper subset of B	$A \subsetneq$	$A \subseteq B$ and $A \neq B$
A is a superset of B	$A \supseteq B$	$B \subseteq A$
The empty set	Ø	the set with no members, {}
The power set of <i>A</i>	$\wp A$	the set of all subsets of A , $\{B \mid B \subseteq A\}$
The union of <i>A</i> and <i>B</i>	$A \cup B$	$\{x \mid x \in A \text{ or } x \in B\}$
The intersection of A and B	$A \cap B$	$\{x \mid x \in A \text{ and } x \in B\}$
The complement of <i>A</i> relative to <i>B</i>	$B - A$ or A^c	$\{x \mid x \in B \text{ and } x \notin A\}$
The product of <i>A</i> and <i>B</i>	$A \times B$	$\{\langle a,b\rangle \mid a \in A \text{ and } b \in B\}$
The n^{th} power of A	A^n	$A \times A \times \cdots \times A$ (<i>n</i> times)
R is a binary relation on A and B		$R \subseteq A imes B$
<i>a</i> is <i>R</i> -related to <i>b</i>	Rab or aRb	$\langle a,b angle\in R$
The domain of <i>R</i>	dom(R)	$\{a \mid \exists b : \langle a, b \rangle \in R\}$
The range of <i>R</i>	$ran\left(R ight)$	$\{b \mid \exists a \colon \langle a, b angle \in R\}$
f maps A to B	$f: A \to B$	$f \subseteq A \times B$ is a function
The image of f	$im\left(f ight)$	$\{b \in B \mid \exists a \in A \colon f(a) = b\}$
<i>f</i> is injective (one-to-one)		$\forall x, y \in A \colon f(x) = f(y) \Rightarrow x = y$
f is surjective (onto)		$\forall x \in B \exists x \in A \colon f(x) = y$
<i>f</i> is bijective		f is injective and surjective

§2 Counting

Notation: If *A* is a set, then |*A*| will be the size of *A* (i.e., how many elements are in *A*). So for instance, if |*A*| = 4, that means that *A* has 4 distinct members. Also, recall: *n*! = *n* × (*n* − 1) × (*n* − 2) × · · · × 3 × 2 × 1

Here are some general principles that will be useful for the problem set (we'll derive them in section, but no need to know how they're derived):

Fact (*Essential Counting*). Let *A* and *B* be sets throughout.

• $|\wp A| = 2^{|A|}$. That is, A has $2^{|A|}$ distinct subsets.

Example: if |A| = 4 (that is, if *A* has 4 elements), then *A* has $2^4 = 16$ distinct subsets.

• $|A \times B| = |A| \times |B|$. That is, the size of a product is just the product of the sizes. **Example:** If |A| = 5 and |B| = 7, $|A \times B| = 5 \times 7 = 35$.

In particular, the number of binary relations on *A* and *B* is just the number of distinct subsets of $A \times B$. Hence, the number of binary relations on $A \times B$ is $2^{|A \times B|} = 2^{35} \approx 3.44 \cdot 10^{10}$ (that's a lot...)

- $|B^A| = |B|^{|A|}$. That is, the number of distinct functions from A to B is $|B|^{|A|}$.
 - **Example:** If |A| = 4 and |B| = 3, then the number of functions from *A* to *B* is $3^4 = 81$.

For counting the number of injective and surjective functions, if the size of *A* and *B* is small, you're better off just listing them out and counting by hand. But here's how to count them, in case you're curious:

Fact (Inessential Counting).

• If $|A| \leq |B|$, the number of injective functions from *A* to *B* is given by:

$$\frac{|B|!}{(|B|-|A|)!}$$

Otherwise, there are no injective functions from *A* to *B*.

• If $|A| \ge |B|$, the number of surjective functions is given by:

$$\sum_{k=0}^{|B|} (-1)^k \binom{|B|}{k} (|B|-k)^{|A|}$$

Otherwise, there are no surjective functions.

• If |A| = |B|, the number of bijective functions is |A|!. Otherwise, there are no bijective functions from *A* to *B*.

§3 Properties of Relations

We'll mostly focus on binary relations. Let $R \subseteq A^2$ be a binary relation on A. We'll abbreviate $\langle a, b \rangle \in R'$ as '*Rab*', and ' $\langle a, b \rangle \notin R'$ as '~ *Rab*'.

- *R* is *reflexive* if for all $a \in A$, *Raa*.
- *R* is *irreflexive* if for all $a \in A$, ~ *Raa*.
- *R* is *symmetric* if for all $a, b \in A$, if *Rab*, then *Rba*.
- *R* is *asymmetric* if for all $a, b \in A$, if *Rab*, then $\sim Rba$.
- *R* is *anti-symmetric* if for all $a, b \in A$, if *Rab* and *Rba*, then a = b.
- *R* is *transitive* if for all $a, b, c \in A$, if *Rab* and *Rbc*, then *Rac*.
- *R* is *intransitive* if for all $a, b, c \in A$, if *Rab* and *Rbc*, then $\sim Rac$.
- *R* is *connected* if for all $a, b \in A$, if $a \neq b$, then either *Rab* or *Rba*.

Here are the properties represented in a diagram. Think of an arrow from *a* to *b* as saying that $\langle a, b \rangle \in R$, and the lack of an arrow from *a* to *b* as saying that $\langle a, b \rangle \notin R$. The presence of the dashed arrows follows from the presence of the solid arrows, given the corresponding property holds.

