Compactness and Löwenheim-Skolem

PHIL 140A

1. Suppose a sentence σ is true in every infinite model. Show that there's an $n \in \mathbb{N}$ such that σ is true in every model of at least size *n*.

Proof: Suppose there's no $n \in \mathbb{N}$ such that σ is true in every model of at least size *n*. Then for each $n \in \mathbb{N}$, there is a \mathfrak{A}_n of at least size *n* such that $\mathfrak{A}_n \not\models \sigma$, i.e., $\mathfrak{A}_n \models \neg \sigma$. This means that $\neg \sigma$ has arbitrarily large finite models. But then by Lemma 4.2.6, it follows that $\neg \sigma$ has an infinite model. So σ is not true in every infinite model.

2. Let $\varphi(x)$ be a formula. For any model \mathfrak{A} , define $\varphi(\mathfrak{A}) \coloneqq \{a \in A \mid \mathfrak{A} \models \varphi(\bar{a})\}$ (the set of elements in \mathfrak{A} satisfying φ). Suppose for each $n \in \mathbb{N}$, there is a model \mathfrak{A}_n such that $|\varphi(\mathfrak{A}_n)| \ge n$. Show that there's a model \mathfrak{A} such that $|\varphi(\mathfrak{A})| \ge \mathfrak{H}_0$ (i.e., $\varphi(\mathfrak{A})$ is infinite).

Proof: Consider the set of sentences $\Gamma = \{\exists_{\geq n} x \varphi(x) \mid n \in \mathbb{N}\}$ (that is, the set of sentences that says "there are at least *n*-many φ 's"). First note that Γ is finitely satisfiable. For suppose $\Gamma_0 \subseteq \Gamma$ is finite. Then there's a max *n* such that $\exists_{\geq n} x \varphi(x) \in \Gamma_0$. But then $\mathfrak{A}_n \models \Gamma_0$. So by compactness, Γ has a model, and that model must contain an infinite number of φ 's.

3. Suppose there's a model \mathfrak{A} such that $\varphi(\mathfrak{A})$ is infinite. Show that for any infinite cardinal number λ , there's a model \mathfrak{B} such that \mathfrak{B} satisfies the same sentences as \mathfrak{A} and $\varphi(\mathfrak{B})$ is exactly of size λ .

Proof: Suppose $\varphi(\mathfrak{A})$ is of size κ , where κ is infinite. Let $\{c_{\alpha} \mid \alpha < \lambda\}$ be a set of new constants. Consider the following set of sentences:

$$\Gamma \coloneqq Th(\mathfrak{A}) \cup \{c_{\alpha} \neq c_{\beta} \mid \alpha \neq \beta \text{ and } \alpha, \beta < \lambda\} \cup \{\varphi(c_{\alpha}) \mid \alpha < \lambda\}.$$

Γ is finitely satisfiable: in fact, for any finite subset $Γ_0 ⊆ Γ$, we can let \mathfrak{A} be our model, where we just assign each $c_α$ occurring in $Γ_0$ to a distinct φ. So by compactness, Γ is satisfiable, and hence, there is a model \mathfrak{B} of Γ. Now, \mathfrak{B} *may have more than* λ*-many* φ's. But now by Downward Löwenheim-Skolem, we can find a model of size λ that make all the same sentences true as \mathfrak{B} . So there's a model of size λ of Γ. And since there's at least λ-many φ's in any model of Γ, it follows that such a model has exactly λ-many φs. 4. Let *P* and *Q* be unary-predicates. Show that there is no first-order sentence μ that is true in a model \mathfrak{A} iff $|P(\mathfrak{A}) \cap \neg Q(\mathfrak{A})| < |P(\mathfrak{A}) \cap Q(\mathfrak{A})|$ (i.e., most *P*s are *Q*s in \mathfrak{A}).

Proof: Suppose for *reductio* there is such a μ . Consider the set of sentences:

$$\Gamma \coloneqq \{\mu\} \cup \{\exists_{\geq n} x \left(P(x) \land Q(x) \right) \mid n \in \mathbb{N}\} \cup \{\exists_{\geq n} x \left(P(x) \land \neg Q(x) \right) \mid n \in \mathbb{N}\}.$$

 Γ is finitely satisfiable. To see this, let $\Gamma_0 \subseteq \Gamma$ be finite. Then there's a max *n* such that $\exists_{\geq n} x (P(x) \land \neg Q(x)) \in \Gamma_0$ and a max *m* such that $\exists_{\geq m} x (P(x) \land Q(x)) \in \Gamma_0$. Let $k = \max(n, m)$. Define a model:

$$\mathfrak{A}_k = (\{1, \ldots, 2k+1\}, \{1, \ldots, 2k+1\}, \{1, \ldots, k+1\}).$$

So everything is *P* and only $1, \ldots, k + 1$ are *Q*. Then:

$$|P(\mathfrak{A}) \cap Q(\mathfrak{A})| = |Q(\mathfrak{A})| = k + 1.$$

But:

$$P(\mathfrak{A}) \cap \neg Q(\mathfrak{A})| = |\neg Q(\mathfrak{A})| = (2k+1) - (k+1) = k.$$

So $|P(\mathfrak{A}) \cap \neg Q(\mathfrak{A})| < |P(\mathfrak{A}) \cap Q(\mathfrak{A})|$. And since $k = \max(n, m)$, and since both sets above are of at least size k, it follows that $\mathfrak{A}_k \models \mu \land \exists_{\geq n} x (P(x) \land \neg Q(x)) \land \exists_{\geq m} x (P(x) \land Q(x))$. So $\mathfrak{A}_k \models \Gamma_0$.

So by compactness, Γ is satisfiable. So there's a model $\mathfrak{A} \models \Gamma$. Now, in any model of Γ , $|P(\mathfrak{A}) \cap Q(\mathfrak{A})| \ge \aleph_0$ and $|P(\mathfrak{A}) \cap \neg Q(\mathfrak{A})| \ge \aleph_0$. So \mathfrak{A} has to be infinite. But we cannot yet derive a contradiction from this, since it might be that $|P(\mathfrak{A}) \cap \neg Q(\mathfrak{A})| < |P(\mathfrak{A}) \cap Q(\mathfrak{A})|$ (in particular, $|P(\mathfrak{A}) \cap \neg Q(\mathfrak{A})|$ might be a smaller infinite cardinal than $|P(\mathfrak{A}) \cap Q(\mathfrak{A})|$).

But we can derive a contradiction using Downward Löwenheim-Skolem. For by Downward Löwenheim-Skolem, there is a *countable* model \mathfrak{B} that makes all the same first-order sentences true as \mathfrak{A} . Hence, $\mathfrak{B} \models \Gamma$, and in particular, $\mathfrak{B} \models \mu$. But if \mathfrak{B} is countable, and if $|P(\mathfrak{B}) \cap \neg Q(\mathfrak{B})| \ge \aleph_0$ and $|P(\mathfrak{B}) \cap Q(\mathfrak{B})| \ge \aleph_0$, then $|P(\mathfrak{B}) \cap \neg Q(\mathfrak{B})| = \aleph_0 = |P(\mathfrak{B}) \cap Q(\mathfrak{B})|$. So even though $\mathfrak{B} \models \mu$, we have that $|P(\mathfrak{B}) \cap \neg Q(\mathfrak{B})| \le |P(\mathfrak{B}) \cap Q(\mathfrak{B})|$.