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1.  Show that the following propositions are derivable:
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Proof (d):

Show that the following rules are derivable in our deduction system:
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Proof: Suppose you have the following inference in your derivation tree:
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Then replace this subtree in your derivation with the following (where n oc-
curs nowhere else in your derivation tree):
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Likewise if you have the following inference in your derivation tree:
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Suppose we replaced RAA with = E for only atomic formulas. Show that the full
- E would still be derivable.

Proof: We need to proceed by induction. We're assuming that the following
rules hold for atomic ¢ (including L!):
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So our base case is already taken care of by == E,. So suppose =~ E, holds,
where ¥ is any proper subformula of ¢.

First, suppose ¢ = (¢ A 6). We want to show that we can derive this:
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Here’s how we do it. The proof doesn’t fit on the whole page, so I'll split it into
parts. Let D, be the following derivation tree (where again n occurs nowhere
in our derivation tree):
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Likewise, let Dy be the following derivation tree:
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Then we just need to replace
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Next, suppose ¢ = (¢ — 6). We want to show that we can derive this:
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Here’s how we do it:
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So by induction, we can rederive - — E in full.




