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1. Prove that
řn

k“1p2k ´ 1q “ n2 for all n ě 1.

Proof: First, we show the base case, i.e., the case where k “ 1. 2k ´ 1 “

p2 ¨ 1q ´ 1 “ 2 ´ 1 “ 1 “ 12.

Next, we show the inductive step. Assume as our inductive hypothesis
that for some n,

řn
k“1p2k ´ 1q “ n2. We want to show that this holds also for

n ` 1, i.e., that
řn`1

k“1p2k ´ 1q “ pn ` 1q2. Here’s the argument:

n`1
ÿ

k“1

p2k ´ 1q “ p2 ¨ pn ` 1qq ´ 1 `

n
ÿ

k“1

2k ´ 1

“ p2n ` 2q ´ 1 `

n
ÿ

k“1

p2k ´ 1q

“ 2n ` 1 `

n
ÿ

k“1

p2k ´ 1q

“ 2n ` 1 ` n2

“ pn ` 1q2.

The second to last step follows by our inductive hypothesis.So by induction,
for all n,

řn
k“1p2k ´ 1q “ n2. ∎

2. Prove that for any set x, if x has exactly n members, then P pxq has exactly 2n mem-
bers (i.e., there are 2n subsets of x).

Proof: First, we show the base case. The empty set H has no members.
P pHq “ tHu, which has one member. And 20 “ 1, so the claim holds.

Next, we show the inductive step. Assume as our inductive hypothesis
that for some n, if a set x has n elements, then it has 2n subsets. We want to
show that this is also true for n ` 1. Let x be a set with n ` 1 members, say
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a1, . . . , an`1. We proceed in two parts. First, we’ll count the number of subsets
of x that do not contain an`1. Then we’ll count the number of subsets of x that
do contain an`1.

First, how many subsets of x are there that don’t contain an`1? This is
equivalent to asking how many subsets of y “ ta1, . . . , anu there are. But since
y only has n members, by our inductive hypothesis, it follows that y has 2n

subsets. So there are 2n-many subsets of x that do not contain an`1.

Next, how many subsets of x are there that do contain an`1. The answer is:
the same as the number of subsets that do not contain an`1. For each subset that
does contain an`1 corresponds to exactly one subset of x that doesn’t contain
an`1 (namely, the subset you obtain by removing an`1). So there are also 2n

subsets of x that do contain an`1.

Putting these observations together, there are 2n `2n “ 2 ¨2n “ 2n`1 subsets
of x. So by induction, this is true for all n. ∎

3. Define the length of a propositional formula φ as follows:

len ppiq “ len pKq “ 1

len pp¬φqq “ len pφq ` 1

len ppφ◻ψqq “ len pφq ` len pψq ` 1.

Prove that the number of subformulas in φ is less than or equal to len pφq.

Proof: Let #sub pφq stand for the number of subformulas of φ. We proceed
by induction on the structure of formulas. First, the base case. Since pi and
K only have one subformula (namely themselves), #sub ppiq “ len ppiq and
#sub pKq “ len pKq.

Next, we show the inductive steps. There are technically five inductive
steps, one for each connective. But since the ^, _, Ñ, and Ø are all of the
same form, we’ll just present it generically with ◻.

First, the ¬ case. Assume as our inductive hypothesis that #sub pφq ď

len pφq. Then #sub pp¬φqq “ #sub pφq ` 1 (to include p¬φq itself). And since
#sub pφq ď len pφq, it follows that #sub pp¬φqq “ #sub pφq ` 1 ď len pφq ` 1 “

len pp¬φqq. Hence, we have shown that #sub pp¬φqq ď len pp¬φqq.

Next, the ◻ case. Assume as our inductive hypothesis that #sub pφq ď

len pφq and #sub pψq ď len pψq. Then #sub ppφ◻ψqq ď #sub pφq ` #sub pψq ` 1
(remember, it may not be equal if φ and ψ have subformulas in common!). And
since #sub pφq ď len pφq and #sub pψq ď len pψq, it follows that #sub ppφ◻ψqq ď

#sub pφq ` #sub pψq ` 1 ď len pφq ` len pψq ` 1 “ len ppφ◻ψqq. Hence, we have
that #sub ppφ◻ψqq ď len ppφ◻ψqq. ∎
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4. For any three formulas φ, ψ, and θ, define the formula θrψ{φs to be the result of
replacing every instance of ψ in θ with φ (if there is no occurrence of φ in θ, then
θrψ{φs “ θ). Show that if φ and ψ are logically equivalent (i.e., φ and ψ have the
same truth value on every row of the truth table), then θ and θrψ{φs are logically
equivalent. (Hint: don’t forget the case where θ “ φ.)

Proof: Either θ “ φ or θ ‰ φ. First, suppose θ “ φ. Then θrψ{φs “ φrψ{φs “ ψ.
Now, by assumption, φ and ψ are logically equivalent. So θ “ φ and θrψ{φs “ ψ
are logically equivalent.

Now suppose for the rest of the proof that θ ‰ φ. We must proceed by
induction on the structure of θ. For the base cases, suppose first that θ “ p
for some atomic p. Since we’re assuming that θ ‰ φ, that means φ can’t occur
anywhere in p. So θrψ{φs “ θ. Hence, θ and θrψ{φs are logically equivalent.

Now for the inductive steps. This time, we can’t just schematize the binary
connectives as ◻. We must separate the inductive steps for each connective.
But we’ll only show the ¬ case for illustration. Throughout, let our inductive
hypothesis be the following: for any proper subformula θ1 of θ, θ1 is logically
equivalent to θ1rψ{φs.

Consider the ¬ case. Suppose θ “ p¬ θ1q. By our inductive hypothesis, that
means that θ1 and θ1rψ{φs are logically equivalent. Now, by the definition of the
truth table for ¬, for any formula χ, the truth value of p¬ χq on any row of the
truth table is just the opposite of the truth value of χ on that row. Hence, the
truth value of p¬ θ1q on any row is the opposite of the truth value of θ1 on that
row. Likewise for θ1rψ{φs. But if the column of truth values for θ1 and θ1rψ{φs

is the same, and we just flip the truth value on every row in those columns,
the resulting columns will still be the same. Hence, p¬ θ1q and p¬ θ1rψ{φsq have
the same truth value on every row of the truth table.

But we’re not done yet! We haven’t shown what we want to show. So far,
we’ve shown that p¬ θ1q and p¬ θ1rψ{φsq are logically equivalent. But what we
really wanted to show was that p¬ θ1q and p¬ θ1qrψ{φs are logically equivalent.
The rψ{φs needs to apply to p¬ θ1q not just θ1 when θ1 is under a ¬. This makes
a difference. For instance, prK{p¬ pqs “ p, since p¬ pq occurs nowhere in p.
Hence, p¬ prK{p¬ pqsq “ p¬ pq. But p¬ pqrK{p¬ pqs “ K. So the scope of rψ{φs

makes a difference.

However, we’re assuming that θ “ p¬ θ1q is not equal to φ. So we know that
θrψ{φs “ p¬ θ1qrψ{φs is not equal to ψ. So any replacement of an occurrence of
φ with ψ in θ must result from replacing that φ in θ1 with ψ and then negating
the result. So θrψ{φs “ p¬ θ1qrψ{φs “ p¬ θ1rψ{φsq, which we already showed
is equivalent to θ. So now we’ve shown what we wanted to show: ¬ θ1 and
p¬ θ1qrψ{φs are logically equivalent. ∎
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