PROOFS BY INDUCTION

PHIL 140A

1. Prove that $\sum_{k=1}^{n} (2k-1) = n^2$ for all $n \ge 1$.

Proof: First, we show the base case, i.e., the case where k = 1. $2k - 1 = (2 \cdot 1) - 1 = 2 - 1 = 1 = 1^2$.

Next, we show the inductive step. Assume as our inductive hypothesis that for some n, $\sum_{k=1}^{n} (2k - 1) = n^2$. We want to show that this holds also for n + 1, i.e., that $\sum_{k=1}^{n+1} (2k - 1) = (n + 1)^2$. Here's the argument:

$$\sum_{k=1}^{n+1} (2k-1) = (2 \cdot (n+1)) - 1 + \sum_{k=1}^{n} 2k - 1$$
$$= (2n+2) - 1 + \sum_{k=1}^{n} (2k-1)$$
$$= 2n+1 + \sum_{k=1}^{n} (2k-1)$$
$$= 2n+1 + n^{2}$$
$$= (n+1)^{2}.$$

The second to last step follows by our inductive hypothesis. So by induction, for all n, $\sum_{k=1}^{n} (2k - 1) = n^2$.

2. Prove that for any set *x*, if *x* has exactly *n* members, then $\mathcal{P}(x)$ has exactly 2^n members (i.e., there are 2^n subsets of *x*).

Proof: First, we show the base case. The empty set \emptyset has no members. $\mathcal{P}(\emptyset) = \{\emptyset\}$, which has one member. And $2^0 = 1$, so the claim holds.

Next, we show the inductive step. Assume as our inductive hypothesis that for some *n*, if a set *x* has *n* elements, then it has 2^n subsets. We want to show that this is also true for n + 1. Let *x* be a set with n + 1 members, say

 a_1, \ldots, a_{n+1} . We proceed in two parts. First, we'll count the number of subsets of *x* that do not contain a_{n+1} . Then we'll count the number of subsets of *x* that do contain a_{n+1} .

First, how many subsets of *x* are there that don't contain a_{n+1} ? This is equivalent to asking how many subsets of $y = \{a_1, ..., a_n\}$ there are. But since *y* only has *n* members, by our inductive hypothesis, it follows that *y* has 2^n subsets. So there are 2^n -many subsets of *x* that do not contain a_{n+1} .

Next, how many subsets of *x* are there that do contain a_{n+1} . The answer is: *the same as the number of subsets that do not contain* a_{n+1} . For each subset that does contain a_{n+1} corresponds to exactly one subset of *x* that doesn't contain a_{n+1} (namely, the subset you obtain by removing a_{n+1}). So there are also 2^n subsets of *x* that do contain a_{n+1} .

Putting these observations together, there are $2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$ subsets of *x*. So by induction, this is true for all *n*.

3. Define the *length* of a propositional formula φ as follows:

$$\begin{split} & \operatorname{len}\left(p_{i}\right) = \operatorname{len}\left(\bot\right) = 1\\ & \operatorname{len}\left(\left(\neg\varphi\right)\right) = \operatorname{len}\left(\varphi\right) + 1\\ & \operatorname{len}\left(\left(\varphi\Box\psi\right)\right) = \operatorname{len}\left(\varphi\right) + \operatorname{len}\left(\psi\right) + 1. \end{split}$$

Prove that the number of subformulas in φ is less than or equal to len (φ).

Proof: Let #sub (φ) stand for the number of subformulas of φ . We proceed by induction on the structure of formulas. First, the base case. Since p_i and \bot only have one subformula (namely themselves), #sub (p_i) = len (p_i) and #sub (\bot) = len (\bot).

Next, we show the inductive steps. There are technically five inductive steps, one for each connective. But since the \land , \lor , \rightarrow , and \leftrightarrow are all of the same form, we'll just present it generically with \Box .

First, the \neg case. Assume as our inductive hypothesis that $\# \operatorname{sub}(\varphi) \leq \operatorname{len}(\varphi)$. Then $\# \operatorname{sub}((\neg \varphi)) = \# \operatorname{sub}(\varphi) + 1$ (to include $(\neg \varphi)$ itself). And since $\# \operatorname{sub}(\varphi) \leq \operatorname{len}(\varphi)$, it follows that $\# \operatorname{sub}((\neg \varphi)) = \# \operatorname{sub}(\varphi) + 1 \leq \operatorname{len}(\varphi) + 1 = \operatorname{len}((\neg \varphi))$. Hence, we have shown that $\# \operatorname{sub}((\neg \varphi)) \leq \operatorname{len}((\neg \varphi))$.

Next, the \Box case. Assume as our inductive hypothesis that $\# \operatorname{sub}(\varphi) \leq \operatorname{len}(\varphi)$ and $\# \operatorname{sub}(\psi) \leq \operatorname{len}(\psi)$. Then $\# \operatorname{sub}((\varphi \Box \psi)) \leq \# \operatorname{sub}(\varphi) + \# \operatorname{sub}(\psi) + 1$ (remember, it may not be equal if φ and ψ have subformulas in common!). And since $\# \operatorname{sub}(\varphi) \leq \operatorname{len}(\varphi)$ and $\# \operatorname{sub}(\psi) \leq \operatorname{len}(\psi)$, it follows that $\# \operatorname{sub}((\varphi \Box \psi)) \leq \# \operatorname{sub}(\varphi) + \# \operatorname{sub}(\psi) + 1 \leq \operatorname{len}(\varphi) + \operatorname{len}(\psi) + 1 = \operatorname{len}((\varphi \Box \psi))$. Hence, we have that $\# \operatorname{sub}((\varphi \Box \psi)) \leq \operatorname{len}((\varphi \Box \psi))$.

4. For any three formulas φ , ψ , and θ , define the formula $\theta[\psi/\varphi]$ to be the result of replacing every instance of ψ in θ with φ (if there is no occurrence of φ in θ , then $\theta[\psi/\varphi] = \theta$). Show that if φ and ψ are logically equivalent (i.e., φ and ψ have the same truth value on every row of the truth table), then θ and $\theta[\psi/\varphi]$ are logically equivalent. (*Hint*: don't forget the case where $\theta = \varphi$.)

Proof: Either $\theta = \varphi$ or $\theta \neq \varphi$. First, suppose $\theta = \varphi$. Then $\theta[\psi/\varphi] = \varphi[\psi/\varphi] = \psi$. Now, by assumption, φ and ψ are logically equivalent. So $\theta = \varphi$ and $\theta[\psi/\varphi] = \psi$ are logically equivalent.

Now suppose for the rest of the proof that $\theta \neq \varphi$. We must proceed by induction on the structure of θ . For the base cases, suppose first that $\theta = p$ for some atomic p. Since we're assuming that $\theta \neq \varphi$, that means φ can't occur anywhere in p. So $\theta[\psi/\varphi] = \theta$. Hence, θ and $\theta[\psi/\varphi]$ are logically equivalent.

Now for the inductive steps. This time, we can't just schematize the binary connectives as \Box . We must separate the inductive steps for each connective. But we'll only show the \neg case for illustration. Throughout, let our inductive hypothesis be the following: for any proper subformula θ' of θ , θ' is logically equivalent to $\theta'[\psi/\varphi]$.

Consider the \neg case. Suppose $\theta = (\neg \theta')$. By our inductive hypothesis, that means that θ' and $\theta'[\psi/\varphi]$ are logically equivalent. Now, by the definition of the truth table for \neg , for any formula χ , the truth value of $(\neg \chi)$ on any row of the truth table is just the opposite of the truth value of χ on that row. Hence, the truth value of $(\neg \theta')$ on any row is the opposite of the truth value of θ' on that row. Likewise for $\theta'[\psi/\varphi]$. But if the column of truth values for θ' and $\theta'[\psi/\varphi]$ is the same, and we just flip the truth value on every row in those columns, the resulting columns will still be the same. Hence, $(\neg \theta')$ and $(\neg \theta'[\psi/\varphi])$ have the same truth value on every row of the truth table.

But we're not done yet! We haven't shown what we want to show. So far, we've shown that $(\neg \theta')$ and $(\neg \theta'[\psi/\varphi])$ are logically equivalent. But what we *really* wanted to show was that $(\neg \theta')$ and $(\neg \theta')[\psi/\varphi]$ are logically equivalent. The $[\psi/\varphi]$ needs to apply to $(\neg \theta')$ not just $\overline{\theta'}$ when θ' is under a \neg . This makes a difference. For instance, $p[\perp/(\neg p)] = p$, since $(\neg p)$ occurs nowhere in p. Hence, $(\neg p[\perp/(\neg p)]) = (\neg p)$. But $(\neg p)[\perp/(\neg p)] = \bot$. So the scope of $[\psi/\varphi]$ makes a difference.

However, we're assuming that $\theta = (\neg \theta')$ is not equal to φ . So we know that $\theta[\psi/\varphi] = (\neg \theta')[\psi/\varphi]$ is not equal to ψ . So any replacement of an occurrence of φ with ψ in θ must result from replacing that φ in θ' with ψ and then negating the result. So $\theta[\psi/\varphi] = (\neg \theta')[\psi/\varphi] = (\neg \theta'[\psi/\varphi])$, which we already showed is equivalent to θ . So now we've shown what we wanted to show: $\neg \theta'$ and $(\neg \theta')[\psi/\varphi]$ are logically equivalent.