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DEFINITIONS

Name Notation Definition
Axiom of Extensionality x “ y Ø @a pa P x Ø a P yq

Restricted Quantifiers @a P x @a P x φ “ @a pa P x Ñ φq

Da P x Da P x φ “ Da pa P x ^ φq

Subset Ď x Ď y Ø @a pa P x Ñ a P yq

Proper Subset Ă x Ă y Ø x Ď y ^ x ‰ y

Intersection X a P x X y Ø pa P x ^ a P yq

x X y “ ta | a P x ^ a P yu

Union Y a P x Y y Ø pa P x _ a P yq

x Y y “ ta | a P x _ a P yu

Complement ´ a P x ´ y Ø pa P x ^ a R yq

x ´ y “ ta | a P x ^ a R yu

Power set P a P P pxq Ø a Ď x
P pxq “ ta | a Ď xu

Ordered Pair pa, bq pa, bq “ ttau , ta, buu

Ordered n-Tuple pa1, . . . , anq “ ppa1, . . . , an´1q, anq

Big Union
Ť

a P
Ť

x Ø Dy pa P y ^ y P xq
Ť

x “ ta | Dy pa P y ^ y P xqu
Ť

iPI xi “
Ť

txi | i P I u

Big Intersection
Ş

a P
Ş

x Ø @y py P x Ñ a P yq
Ş

x “ ta | @y py P x Ñ a P yqu
Ş

iPI xi “
Ş

txi | i P I u

Cartesian Product ˆ x ˆ y “ tpa, bq | a P x ^ b P yu

Domain dom dom pRq “ ta | Db ppa, bq P Rqu

Range ran ran pRq “ tb | Da ppa, bq P Rqu

Composition ˝ pg ˝ f qpaq “ gp f paqq

Equivalence Class rasR rasR “ tb | Rpa, bqu
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PROPERTIES OF RELATIONS

Name Definition
Reflexive @a Rpa, aq

Irreflexive @a ¬Rpa, aq

Symmetric @a @b pRpa, bq Ñ Rpb, aqq

Asymmetric @a @b pRpa, bq Ñ ¬Rpb, aqq

Anti-symmetric @a @b ppRpa, bq ^ Rpb, aqq Ñ a “ bq

Transitive @a @b @c ppRpa, bq ^ Rpb, cqq Ñ Rpa, cqq

Euclidean @a @b @c ppRpa, bq ^ Rpa, cqq Ñ Rpb, cqq

Connected @a @b pa ‰ b Ñ pRpa, bq _ Rpb, aqqq

• A relation is an equivalence relation iff it’s reflexive, symmetric, and transitive.

• px,Rq is a partial order iff R Ď x ˆ x and is reflexive, anti-symmetric, and transitive.

• A partial order px,ďq has a is a minimal element in y if there’s no b P y where b ă a.

• px,ďq is well-founded if every nonempty y Ď x has a minimal element.

EXAMPLES

Note: these proofs are purposely wordy so that my reasoning is clear. In the first couple
of problem sets, it’s good idea to go step-by-step and explain your reasoning clearly than
to skip a bunch of steps. However, for the problem set, you don’t necessarily need this
much wordiness; as long as your reasoning is clearly stated, that’s okay.

Exercise. Prove that x Y y “ y Y x.

Proof: By the Axiom of Extensionality, it suffices to show that:

@a pa P x Y y Ø a P y Y xq .

Suppose first that a P x Y y for some arbitrary a. By the definition of union, that
means a P x _ a P y. But by propositional logic, this is equivalent to a P y _ a P x.
So by the definition of union again, that means a P y Y x. Hence, if a P x Y y, then
a P y Y x, i.e., a P x Y y Ñ a P y Y x.

The converse is a symmetric argument. Suppose that a P y Y x. By the definition
of union, that means a P y _ a P x. But by propositional logic, this is equivalent to
a P x _ a P y. So by the definition of union again, that means a P x Y y. Hence, if
a P y Y x, then a P x Y y, i.e., a P y Y x Ñ a P x Y y.

Putting these two together by propositional logic, we have a P x Y y Ø a P y Y x.
And since a was arbitrary, it follows that @a pa P x Y y Ø a P y Y xq, which we said
by the Axiom of Extensionality implies that x Y y “ y Y x. ∎
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Exercise. Prove x Y y “ y Y x without the Axiom of Extensionality.
Hint: use the alternative definition of union from the reading:

z “ x Y y Ø @a pa P z Ø pa P x _ a P yqq .

Exercise. A relation is an equivalence relation if it’s reflexive, symmetric, and tran-
sitive. Prove that a relation R is an equivalence relation iff it’s reflexive and eu-
clidean

Proof: We need to show two things, namely the left-to-right direction and the
right-to-left direction:

(ñ) If R is an equivalence relation, then it’s reflexive and euclidean.

(ð) If R is reflexive and euclidean, then it’s an equivalence relation.

It’s easiest to show each direction separately.

(ñ) Suppose R is an equivalence relation. By definition, that means R is reflex-
ive, symmetric, and transitive. So we just need to show that it’s euclidean,
i.e., that @a @b @c ppRpa, bq ^ Rpa, cqq Ñ Rpb, cqq. Let a, b, and c be arbitrary el-
ements such that Rpa, bq and Rpa, cq. We want to show that Rpb, cq. By the
symmetry of R, it follows from Rpa, bq that Rpb, aq. But since Rpb, aq and Rpa, cq,
it follows from the transitivity of R that Rpb, cq, which is what we want. So for
any arbitrary elements a, b, and c, if Rpa, bq and Rpa, cq, then Rpb, cq, i.e., R is
euclidean. ✓

(ð) Suppose R is reflexive and euclidean. We want to show that R is an equiva-
lence relation, i.e., that R is reflexive, symmetric, and transitive. R is reflexive
by hypothesis, so we just need to show symmetry and transitivity.

First, symmetry. Let a and b be arbitrary elements such that Rpa, bq. We
want to show that Rpb, aq. By the reflexivity of R, Rpa, aq. But since Rpa, bq and
Rpa, aq, it follows by the euclidean-ness of R that Rpb, aq, which is what we
want. So for any arbitrary elements a and b, if Rpa, bq, then Rpb, aq, i.e., R is
symmetric.

Second, transitivity. Let a, b, and c be arbitrary elements such that Rpa, bq

and Rpb, cq. We want to show that Rpa, cq. By the symmetry of R and since
Rpa, bq, it follows that Rpb, aq. But then since Rpb, aq and Rpb, cq, by the euclidean-
ness of R, it follows that Rpa, cq, which is what we want. So for any arbitrary
a, b, and c, if Rpa, bq and Rpb, cq, then Rpa, cq, i.e., R is transitive. ✓ ∎
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