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DEFINITIONS
Name Notation Definition
Axiom of Extensionality xX=y — Va(aexeoacy)
Restricted Quantifiers Vae x Vaex ¢ Va (aex— @)
Ja e x Jaex ¢ Ja (aex A o)
Subset c xXCy — Va(aex—aey)
Proper Subset c xXcy o XSYAXFEY
Intersection N aexny o (aexnacy)
xny = {alaexnrnacy}
Union v aexvuy o (aexvacy)
XUy = {alaexvaey}
Complement - acx—y o (aexnaty)
x—y = {alaexnrad¢y}
Power set P acP(x) < acx
P (x) = {alacx}
Ordered Pair (a,b) (a,b) {{a},{a,b}}
Ordered n-Tuple (a1,...,a,) ((at,....an-1),a,)
Big Union U aelJx — dy(aeyaryex)
U {a |3y (@aeynyex)}
Uier xi Ufxiliel}
Big Intersection N ae()x <« Vy(yex—acey)

Cartesian Product
Domain

Range
Composition
Equivalence Class

{a|Vy (yex—aey)}

N {xi|iel}

{(a,b) lae x Abey}
{a |3b ((a,b) €R)}
{b|da ((a,b) €R)}
g(f(a))

{b |R(a,b)}



PROPERTIES OF RELATIONS

Name Definition
Reflexive VaR(a,a)
Irreflexive Va = R(a,a)
Symmetric VaVb (R(a,b) — R(b,a))
Asymmetric VYaVb (R(a,b) - —~R(b,a))
Anti-symmetric VaVb ((R(a,b) A R(b,a)) — a = D)
Transitive VYaV¥b¥c ((R(a,b) A R(b,c)) — R(a,c))
Euclidean VYaV¥b¥c ((R(a,b) A R(a,c)) — R(b,c))
Connected VaVb (a # b — (R(a,b) v R(b,a)))
° A relation is an equivalence relation iff it’s reflexive, symmetric, and transitive.
o (x,R) is a partial order iff R C x x x and is reflexive, anti-symmetric, and transitive.

e A partial order (x, <) has a is a minimal element in y if there’s no b € y where b < a.

o (x, <) is well-founded if every nonempty y  x has a minimal element.

EXAMPLES

Note: these proofs are purposely wordy so that my reasoning is clear. In the first couple
of problem sets, it’s good idea to go step-by-step and explain your reasoning clearly than
to skip a bunch of steps. However, for the problem set, you don’t necessarily need this
much wordiness; as long as your reasoning is clearly stated, that’s okay.

Exercise. Prove thatx uy =y U x.

Proof: By the Axiom of Extensionality, it suffices to show that:
Va(aexuy<—acyux).

Suppose first that a € x U y for some arbitrary a. By the definition of union, that
means a € x v a € y. But by propositional logic, this is equivalent toa € y v a € x.
So by the definition of union again, that means a € y U x. Hence, if a € x U y, then
ac€Eyuxie,aexuy—>acyuux.

The converse is a symmetric argument. Suppose that a € y U x. By the definition
of union, that means a € y v a € x. But by propositional logic, this is equivalent to
a € x v a €y. So by the definition of union again, that means a € x u y. Hence, if
acyux,thenaexuyie,acyux—>acxuy.

Putting these two together by propositional logic, we haveae xuy < acyux.
And since a was arbitrary;, it follows that Va (a € x Uy < a € y U x), which we said
by the Axiom of Extensionality implies that x Uy = y U x. u




Exercise. Prove x U y = y U x without the Axiom of Extensionality.
Hint: use the alternative definition of union from the reading:

z=xuy<—Va(laezo (aexvacey)).

Exercise. A relation is an equivalence relation if it’s reflexive, symmetric, and tran-
sitive. Prove that a relation R is an equivalence relation iff it’s reflexive and eu-
clidean

Proof: We need to show two things, namely the left-to-right direction and the
right-to-left direction:

(=) If Ris an equivalence relation, then it’s reflexive and euclidean.

(<) If Ris reflexive and euclidean, then it’s an equivalence relation.
It’s easiest to show each direction separately.

(=) Suppose R is an equivalence relation. By definition, that means R is reflex-
ive, symmetric, and transitive. So we just need to show that it’s euclidean,
i.e., that VaVbVc ((R(a,b) A R(a,c)) — R(b,c)). Let a, b, and ¢ be arbitrary el-
ements such that R(a,b) and R(a,c). We want to show that R(b,c). By the
symmetry of R, it follows from R(a, b) that R(b, a). But since R(b,a) and R(a, ¢),
it follows from the transitivity of R that R(b, ¢), which is what we want. So for
any arbitrary elements q, b, and ¢, if R(a,b) and R(a,c), then R(b,¢), i.e., R is
euclidean. v/

(<) Suppose R is reflexive and euclidean. We want to show that R is an equiva-
lence relation, i.e., that R is reflexive, symmetric, and transitive. R is reflexive
by hypothesis, so we just need to show symmetry and transitivity.

First, symmetry. Let a and b be arbitrary elements such that R(a,b). We
want to show that R(b, a). By the reflexivity of R, R(a, a). But since R(a, b) and
R(a,a), it follows by the euclidean-ness of R that R(b,a), which is what we
want. So for any arbitrary elements a and b, if R(a,b), then R(b,a), i.e., R is
symmetric.

Second, transitivity. Let a, b, and ¢ be arbitrary elements such that R(a, b)
and R(b,c). We want to show that R(a,c). By the symmetry of R and since
R(a,b), it follows that R(b, a). But then since R(b, a) and R(b, c¢), by the euclidean-
ness of R, it follows that R(a, ¢), which is what we want. So for any arbitrary
a, b, and c, if R(a,b) and R(b, c), then R(a, ¢), i.e., R is transitive. v/ u




