SET THEORY

PHIL 140A SPRING 2016

DEFINITIONS

Name	Notation Definition		inition	
Axiom of Extensionality		x = y	\leftrightarrow	$\forall a \ (a \in x \leftrightarrow a \in y)$
Restricted Quantifiers	$\forall a \in x \\ \exists a \in x$	$\forall a \in x \ \varphi$ $\exists a \in x \ \varphi$		$\forall a \ (a \in x \to \varphi)$ $\exists a \ (a \in x \land \varphi)$
Subset Proper Subset		$x \subseteq y$ $x \subset y$		$\forall a \ (a \in x \to a \in y)$ $x \subseteq y \land x \neq y$
Intersection	\cap	$a \in x \cap y$ $x \cap y$		$(a \in x \land a \in y)$ $\{a \mid a \in x \land a \in y\}$
Union	U	•		$(a \in x \lor a \in y)$ $\{a \mid a \in x \lor a \in y\}$
Complement	_	•		$(a \in x \land a \notin y)$ $\{a \mid a \in x \land a \notin y\}$
Power set	$\mathcal P$	$a \in \mathcal{P}(x)$ $\mathcal{P}(x)$		$a \subseteq x$ $\{a \mid a \subseteq x\}$
Ordered Pair Ordered <i>n</i> -Tuple	(a,b)			$\{\{a\},\{a,b\}\}\ ((a_1,\ldots,a_{n-1}),a_n)$
Big Union	U		=	$\exists y \ (a \in y \land y \in x) $ $\{a \mid \exists y \ (a \in y \land y \in x)\} $ $\bigcup \{x_i \mid i \in I\}$
Big Intersection	\cap	$a \in \bigcap x$ $\bigcap x$ $\bigcap_{i \in I} x_i$	=	$\forall y \ (y \in x \to a \in y)$ $\{a \mid \forall y \ (y \in x \to a \in y)\}$ $\bigcap \{x_i \mid i \in I\}$
Cartesian Product Domain Range Composition Equivalence Class	\times dom ran \circ $[a]_R$	$x \times y$ dom(R) ran(R) $(g \circ f)(a)$ $[a]_R$	= = =	$\{(a,b) \mid a \in x \land b \in y\} $ $\{a \mid \exists b \ ((a,b) \in R)\} $ $\{b \mid \exists a \ ((a,b) \in R)\} $ $g(f(a)) $ $\{b \mid R(a,b)\} $

PROPERTIES OF RELATIONS

Name	Definition
Reflexive	$\forall a R(a,a)$
Irreflexive	$\forall a \ \neg R(a, a)$
Symmetric	$\forall a \forall b (R(a,b) \to R(b,a))$
Asymmetric	$\forall a \forall b (R(a,b) \to \neg R(b,a))$
Anti-symmetric	$\forall a \forall b ((R(a,b) \land R(b,a)) \to a = b)$
Transitive	$\forall a \forall b \forall c ((R(a,b) \land R(b,c)) \rightarrow R(a,c))$
Euclidean	$\forall a \forall b \forall c ((R(a,b) \land R(a,c)) \rightarrow R(b,c))$
Connected	$\forall a \forall b (a \neq b \rightarrow (R(a,b) \vee R(b,a)))$

- A relation is an *equivalence relation* iff it's reflexive, symmetric, and transitive.
- (x, R) is a *partial order* iff $R \subseteq x \times x$ and is reflexive, anti-symmetric, and transitive.
- A partial order (x, \le) has a is a *minimal element* in y if there's no $b \in y$ where b < a.
- (x, \leq) is *well-founded* if every nonempty $y \subseteq x$ has a minimal element.

EXAMPLES

Note: these proofs are purposely wordy so that my reasoning is clear. In the first couple of problem sets, it's good idea to go step-by-step and explain your reasoning clearly than to skip a bunch of steps. However, for the problem set, you don't necessarily need this much wordiness; as long as your reasoning is clearly stated, that's okay.

Exercise. Prove that $x \cup y = y \cup x$.

Exercise. Prove $x \cup y = y \cup x$ without the Axiom of Extensionality. *Hint*: use the alternative definition of union from the reading:

$$z = x \cup y \leftrightarrow \forall a \ (a \in z \leftrightarrow (a \in x \lor a \in y)).$$

Exercise. A relation is an *equivalence relation* if it's reflexive, symmetric, and transitive. Prove that a relation R is an equivalence relation iff it's reflexive and euclidean