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1 What is it?
Bayesian epistemology (also called “Bayesianism”) is a quantitative
approach to epistemology that models rational learning and inductive
reasoning using probability theory. It consists of three core tenets:

Bayesianism:

1. Beliefs are not binary: they come in degrees. Degrees of
belief are also called credences.

2. Rational credences obey the axioms of probability.

3. Rational belief update goes via conditionalization.

We will break each of these assumptions down. But first, some basic
clarifications:

Question: Didn’t Hume show that induction isn’t justified?

Maybe. But let’s ignore that.

Question: Is Bayesianism a descriptive theory about how people actually
reason or a normative theory about how they should reason?

It depends. Most Bayesians treat it as a normative theory, but some
also treat is as a descriptive theory.

Question: Is it realistic to assume that people have such fine-grained degrees
of belief? Can we really say so-and-so believes it’s raining to degree 0.7325?

Probably not. These tenets of Bayesian epistemology are more like
idealizations than absolute laws.

Question: I don’t like numbers.

Not a question, but don’t worry: you do not need a deep math-
ematical grasp of probability theory. You just need (a) a basic
understanding of how to reason with probability, and (b) familiar-
ity with the notation.

2 Credences
An agent’s credence in some proposition 𝑃 is, very roughly, a measure
of how likely that agent thinks 𝑃 is to be true. In other words, it is a
measure of the strength of that agent’s belief in 𝑃.

Example 2.1. Consider the following propositions.
(i) The campus bells will ring at some point today.
(ii) The number of particles in the universe right now is even.
(iii) I am a lizard.

My guess is that the following is more-or-less accurate:

• Your credence in (i) is fairly high. You are not absolutely
certain that it is true; for example, maybe the bells are
broken. But you think it is quite likely they will ring and
would even be willing to bet money on it.

• Your credence in (ii) is middling. You are indifferent on the
question of whether (ii) is true. That is, you don’t really
have a strong opinion about (ii) either way.

• Your credence in (iii) is pretty low. I mean, I could be a
lizard; maybe I am a very literate lizard wearing a sophis-
ticated disguise. But you probably wouldn’t bet money on
it.

Question: How can we measure the credence someone has in a propo-
sition? Maybe we both have high credence in (i) above. But how do we
know whether your credence in (i) is higher or lower than mine?

Answer: One response (due to Frank Ramsey) is to relate credences
to betting behaviors. Thus, we might try to measure an agent’s
credence in a proposition by asking them which of two bets they
would rather take.
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Example 2.2. Consider the proposition that it will reach 70˝F
tomorrow. Let’s say that I am willing to accept a bet on which
I earn $1 if it reaches 70˝F tomorrow and lose $9 if it does not.
You, on the other hand, are not willing to accept such a bet. Then
it’s reasonable to infer that my credence in the proposition that
it will reach 70˝F tomorrow is higher than your credence in that
proposition. (We might even say that I am at least 90% confident
that it will reach 70˝F tomorrow.)

3 Probability
Bayesianism assumes that credences behave more-or-less like probabil-
ities. Where 𝐴 is some proposition, we write “Pr(𝐴)” for the credence
an agent has in 𝐴.

Credences all obey the following three axioms:

Axiom 1. For any proposition 𝐴, 0 ď Pr(𝐴) ď 1.

This is more-or-less a matter of convention. We could in
principle have chosen different ranges, but this would make
the math unnecessarily complicated.

Axiom 2. If 𝐴 is a necessary truth, then Pr(𝐴) = 1.

This is an idealization about rational agents. We assume
that a rational agent is a perfect logician, meaning they are
completely confident in every logical truth. It is an open
question what the best way of relaxing this constraint is for
mere mortals like us.

Axiom 3. If 𝐴 and 𝐵 are mutually exclusive propositions (i.e., 𝐴 and
𝐵 cannot both be true), then writing “𝐴 _ 𝐵” for the proposition
that either 𝐴 or 𝐵 (or both) is true, Pr(𝐴 _ 𝐵) = Pr(𝐴) + Pr(𝐵).

This axiom is also known as finite additivity. It is the key
axiom that connects the credences of multiple propositions.
We can state the axiom equivalently as follows: if 𝐴1 , . . . , 𝐴𝑛

are mutually exclusive propositions, then Pr(𝐴1 _¨ ¨ ¨_𝐴𝑛) =
Pr(𝐴1) + ¨ ¨ ¨ + Pr(𝐴𝑛).

From these three axioms, the following obtain for any propositions
𝐴 and 𝐵:

(a) Pr(¬𝐴) = 1 ´ Pr(𝐴).

Proof : Since 𝐴 and ¬𝐴 are mutually exclusive, Pr(𝐴 _

¬𝐴) = Pr(𝐴) + Pr(¬𝐴). But since 𝐴 _ ¬𝐴 is a neces-
sary truth, Pr(𝐴 _ ¬𝐴) = 1. Hence, Pr(𝐴) + Pr(¬𝐴) = 1,
and so Pr(¬𝐴) = 1 ´ Pr(𝐴).

(b) If 𝐴 is impossible, then Pr(𝐴) = 0.

Proof : If 𝐴 is impossible, then ¬𝐴 is a necessary truth.
Hence, Pr(¬𝐴) = 1. Using (a), we get Pr(𝐴) = 1 ´ 1 = 0.

(c) If 𝐴 necessarily entails 𝐵, then Pr(𝐴) ď Pr(𝐵).

Proof : If 𝐴 necessarily entails 𝐵, then 𝐴 and ¬ 𝐵 are mu-
tually exclusive. Hence, Pr(𝐴 _ ¬ 𝐵) = Pr(𝐴) + Pr(¬ 𝐵) =
Pr(𝐴) + (1 ´ Pr(𝐵)). Since any probability must be less
than or equal to 1, that means Pr(𝐴 _ ¬ 𝐵) ď 1. So
Pr(𝐴) + (1 ´ Pr(𝐵)) ď 1. Subtracting 1 from both sides,
we get Pr(𝐴) ´ Pr(𝐵) ď 0, i.e., Pr(𝐴) ď Pr(𝐵).

Exercise: Verify (d)–(g) (you may use any of the results above).

(d) If 𝐴 is necessarily equivalent to 𝐵, then Pr(𝐴) = Pr(𝐵).

(e) Pr(𝐴) = Pr(𝐴 & 𝐵) + Pr(𝐴 & ¬ 𝐵).

(f) Pr(𝐴 _ 𝐵) = Pr(𝐴) + Pr(𝐵) ´ Pr(𝐴 & 𝐵).

(g) Pr(𝐴 & 𝐵) ď Pr(𝐴).

You might think that Pr(𝐴 & 𝐵) = Pr(𝐴) ¨ Pr(𝐵). But actually, this is
only true is certain special circumstances. We will return to this matter
momentarily.
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4 Conditionalization
Suppose an agent is not completely certain whether or not 𝐴 is true. If
they learn that 𝐴 is true, what will their new credences look like? That
is, what is their credence in some proposition 𝐵 given 𝐴?

Let us write “Pr(𝐵 | 𝐴)” to denote an agent’s credence in 𝐵 given 𝐴.
Then the Bayesian says that an agent’s credence in 𝐵 once they learn for
certain that 𝐴 is true is determined by the following equation:

Pr(𝐵 | 𝐴) = Pr(𝐴 & 𝐵)
Pr(𝐴) .

In other words, your credence in 𝐵 when you learn 𝐴 is just the pro-
portion of your original credence in 𝐴 that 𝐵 takes up. Note that this
definition assumes that Pr(𝐴) ≠ 0 (you can’t divide by 0). If Pr(𝐴) = 0,
then Pr(𝐵 | 𝐴) is undefined.

Bayesian epistemology stipulates that belief update goes via condi-
tionalization. That is, if Prold is an agent’s credence function prior to
learning that 𝐴 is true and Prnew is their credence function after learning
that 𝐴 is true, then Bayesianism postulates that:

Prnew(𝐵) = Prold(𝐵 | 𝐴).

Aside (Jeffrey Conditionalization): The standard conditionaliza-
tion rule only applies when you learn for certain that 𝐴 is true.
But what happens if you simply become more confident that 𝐴
is true without being absolutely certain?

Richard Jeffrey famously answered this question by stating a
more general update rule. The idea is simple: one should adjust
one’s credences in a proposition 𝐵 proportionally to how much
one’s credence in 𝐴 shifts. This is captured by the following
equation:

Prnew(𝐵) = Prold(𝐵 | 𝐴) ¨ Prnew(𝐴) + Prold(𝐵 | ¬𝐴) ¨ Prnew(¬𝐴).

Notice that this general equation implies the simple conditional-
ization rule when Prnew(𝐴) = 1. By contrast, if your credence in
𝐴 doesn’t change (Prnew(𝐴) = Prold(𝐴)), then neither does your
credence in 𝐵 (Prnew(𝐵) = Prold(𝐵)).

By a simple rearrangement, we have the following:

Pr(𝐴 & 𝐵) = Pr(𝐵 | 𝐴) ¨ Pr(𝐴).

This is the most general equation governing credences in conjunctions.
In particular, we do not generally have Pr(𝐴 & 𝐵) = Pr(𝐴) ¨ Pr(𝐵), since
generally Pr(𝐵 | 𝐴) ≠ Pr(𝐵).

Example 4.1. Suppose I roll a pair of fair dice. You learn that the
first die landed on 6. What is your credence in the proposition
that the second die landed on 6? Intuitively, it’s still 1/6: the
two rolls are independent of each other.

Now suppose the dice are loaded. They are both biased in
favor of landing on the same number, but you don’t know which
number that is. Now if you learn the first die landed on 6, what
is your credence in the proposition that the second landed on 6?
Intuitively, it’s higher than 1/6: the fact that the first landed on
6 makes it more likely that they are both loaded towards 6.

If Pr(𝐵 | 𝐴) = Pr(𝐵), that means that the likelihood of 𝐵 does not
depend on whether 𝐴 is true. We will say that 𝐵 is probabilistically
independent of 𝐴 if Pr(𝐵 | 𝐴) = Pr(𝐵).

Fact 4.2 (Equivalent Reformulations of Independence).
The following are equivalent for any 𝐴 and 𝐵:

(a) Pr(𝐵 | 𝐴) = Pr(𝐵).

(b) Pr(𝐴 | 𝐵) = Pr(𝐴).

(c) Pr(𝐴 & 𝐵) = Pr(𝐴) ¨ Pr(𝐵).

(d) Pr(𝐵 | 𝐴) = Pr(𝐵 | ¬𝐴).

Exercise: Verify that (a)–(d) are equivalent.

The most useful formulation of probabilistic independence is (c): 𝐴
and 𝐵 are independent if and only if Pr(𝐴&𝐵) = Pr(𝐴) ¨Pr(𝐵). It’s worth
emphasizing again: in general, Pr(𝐴 & 𝐵) ≠ Pr(𝐴) ¨ Pr(𝐵). We cannot
even say whether Pr(𝐴 & 𝐵) ď Pr(𝐴) ¨ Pr(𝐵) or vice versa.
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5 Bayes’s Theorem

Theorem 5.1 (Bayes’s Theorem).

Pr(𝐴 | 𝐵) = Pr(𝐵 | 𝐴) ¨ Pr(𝐴)
Pr(𝐵) .

Proof : Using the definition of conditional probability, we get:

Pr(𝐴 & 𝐵) = Pr(𝐵 | 𝐴) ¨ Pr(𝐴)
Pr(𝐵 & 𝐴) = Pr(𝐴 | 𝐵) ¨ Pr(𝐵).

But 𝐴 & 𝐵 and 𝐵 & 𝐴 are logically equivalent, so Pr(𝐴 & 𝐵) =

Pr(𝐵 & 𝐴). Therefore:

Pr(𝐵 | 𝐴) ¨ Pr(𝐴) = Pr(𝐴 | 𝐵) ¨ Pr(𝐵).

Rearranging, we get:

Pr(𝐴 | 𝐵) = Pr(𝐵 | 𝐴) ¨ Pr(𝐴)
Pr(𝐵) .

Bayes’s theorem is a quite useful result for the purposes of studying
confirmation. Replacing ‘𝐴’ with ‘𝐻’ and replacing ‘𝐵’ with ‘𝐸’, the
theorem states:

Pr(𝐻 | 𝐸) = Pr(𝐸 | 𝐻) ¨ Pr(𝐻)
Pr(𝐸) .

This is useful is because often the probability on the righthand side of
the equation are each individually easier to determine directly than the
probability on the lefthand side. The lefthand side tells us how much
an observation of 𝐸 would confirm hypothesis 𝐻. On the righthand
side, we have Pr(𝐸 | 𝐻), Pr(𝐻) and Pr(𝐸). That is, we just need to ask
how likely we think 𝐸 and 𝐻 are now, and then determine how likely
𝐸 is given the hypothesis 𝐻, which is usually just a matter of fleshing
out the empirical consequences of a theory (that might still be hard, of
course; but determining Pr(𝐻 | 𝐸) directly is usually harder).

6 Dutch Book
Bayesianism is committed to the following three assumptions:

1. Rational agents have degrees of belief, or credences.

2. Rational credences obey the probability axioms.

3. Rational belief update goes via conditionalization.

Assumption 1 seems fairly plausible. But why should we accept as-
sumptions 2 or 3? That is, why should our beliefs obey the probability
axioms, and why should we update our beliefs via conditionalization?

An influential answer (from Ramsey and de Finetti) utilizes Dutch
book arguments. A Dutch book is a collection of bets such that if one
accepts all of these bets, then one is guaranteed to lose money no matter
what the outcome is. Intuitively, if an agent accepts a Dutch book, they
are irrational. Given this assumption, one can prove the following: an
agent will never accept a Dutch book if and only if their credences obey
the axioms of probability.

For instance, suppose an agent violates Axiom 2 (that Pr(𝐴) = 1 if 𝐴
is necessary). Say their credence the necessary truth 𝐴 is 0.8. Then they
will accept a bet on which they lose $5 if 𝐴 is true and earn $1,000,000
if 𝐴 is false. In that case, they will be guaranteed to lose money because
𝐴 is necessarily true, i.e., ¬𝐴 is impossible.

Here is an example of a Dutch book argument for Axiom 3.

Example 6.1. Let’s suppose that for some mutually exclusive 𝐴
and 𝐵, Dumbo’s credences are: Pr(𝐴_𝐵) = Pr(𝐴) = Pr(𝐵) = 1/4.
Then Dumbo will take these bets if you offer them:
(1) If 𝐴, then you pay Dumbo $8; if ¬𝐴, Dumbo pays you $2.

(2) If 𝐵, then you pay Dumbo $8; if ¬ 𝐵, Dumbo pays you $2.

(3) If 𝐴 _ 𝐵, then Dumbo pays you $8; if ¬(𝐴 _ 𝐵), you pay
Dumbo $3.

If he takes all three of these bets, then Dumbo owes you money
no matter what happens. Exercise: Find a Dutch book against
Dumbo if instead Pr(𝐴 _ 𝐵) = 3/4.
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