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Abstract. Many authors have noted that a number of English modal sentences cannot be formalized
into standard first-order modal logic. Some widely discussed examples include “There could have
been things other than there actually are” and “Everyone who’s actually rich could have been poor.”
In response, many authors have introduced an “actually” operator @ into the language of first-order
modal logic. It is occasionally noted that some of the example sentences still cannot be formalized
with @ if one allows only actualist quantifiers, and embedded versions of these example sentences
cannot be formalized even with possibilist quantifiers and @. The typical justification for these
claims is to observe that none of the most plausible candidate formalizations succeed. In this paper,
we prove these inexpressibility results by using a modular notion of bisimulation for first-order
modal logic with “actually” and other operators. In doing so, we will explain in what ways these
results do or do not generalize to more expressive modal languages.

§1 Introduction
Despite all of its strengths, first-order modal logic faces fundamental limitations in expres-
sive power. Some classic examples demonstrating this include:

(E) There could have been things other than there actually are.1

(R) Everyone who’s actually rich could have been poor.2

The first says that there is a possible world where something exists that doesn’t actually
exist. The second, on one reading, says that there’s a possible world where everyone that
is rich in the actual world is poor in that world. It has been shown using (rather compli-
cated) Henkin-style constructions that even very simple sentences like (E) and (R) cannot
be expressed in first-order modal logic with actualist quantifiers (i.e., quantifiers ranging
over existents) Hodes [1984b]. Using possibilist quantifiers (i.e., quantifiers ranging over
all possible objects) and an existence predicate, (E) can be expressed, but (R) is still inex-
pressible Wehmeier [2001].

In response to these expressive limitations, a number of authors have considered in-
troducing an “actually” operator @ into the language Crossley and Humberstone [1977];
Davies and Humberstone [1980]; Hazen [1976, 1990]; Hodes [1984a]. They then point out
that in the presence of @ and possibilist quantifiers (where Π is the universal possibilist
quantifier) we can formalize (R) as:

◇Πx (@Rich(x) Ñ Poor(x)) . (1)

1Originally from [Hazen, 1976, p. 31].
2Originally from [Cresswell, 1990, p. 34].

1
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However, if we replace the Π above with an actualist quantifier @, (1) would yield the
wrong result Bricker [1989]; Fara and Williamson [2005]. For then (1) would only require
that there is a world w where everyone in w who is actually rich is poor in w, whereas (R)
requires that everyone in the actual world who’s actually rich is poor in w.

It has also been noted that even with possibilist quantifiers, sentences like:

(NE) Necessarily, there could have been other things than those that existed.

(NR) Necessarily, the rich could have all been poor.

remain inexpressible Bricker [1989]; Cresswell [1990]; Hazen [1976]; Sider [2010]. For in-
stance, on one reading, (NR) says that in all possible worlds w, there’s a possible world v
where everyone rich in w is poor in v. But, for instance, formalizing (NR) as

◻◇Πx (@Rich(x) Ñ Poor(x)) (2)

will yield the wrong result. This says that for all worlds w, there’s a world v such that ev-
eryone that’s actually rich (not rich in w) is poor in v. One could try to add more operators
to the language, but problems keep cropping up van Benthem [1977]; Cresswell [1990].

These inexpressibility claims are often justified in the literature by example: all of the
most straightforward attempts at formalizing these English sentences fail. While this style
of argument may be convincing, it does not constitute a proof of these expressive limita-
tions. Furthermore, the only proofs known in the literature involve quite complicated and
indirect Henkin constructions that are limited to specific languages. In this paper, we will
provide a single proof method for generating these inexpressibility proofs for a wide va-
riety of quantified modal languages using a suitable modular notion of bisimulation for
first-order modal logic. For concreteness, we’ll focus on the proofs for the inexpressibility
of (R) and (NR), which have proven more difficult than (E) and (NE). In passing, we will
see how these inexpressibility results do, and do not, generalize to more powerful modal
languages.

§2 First-Order Modal Logic
First, we’ll need to get clear about what exactly we’re taking first-order modal logic to
be. The details below are fairly standard, with the exception that our semantics is two-
dimensional (to account for the actuality operator @). While we’ve picked a particularly
simple formulation of first-order modal logic, these inexpressibility results apply to a wide
range of formulations.3

The signature for our first-order modal language L1M contains:

• VAR = tx1 , x2 , x3 , . . .u (the set of (object) variables);
• PREDn = tPn

1 , P
n
2 , P

n
3 , . . .u for each n ě 1 (the set of n-place predicates);

3See Garson [2001] for a tree of such formulations.
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The set of formulas in L1M or L1M-formulas is defined recursively:

φ F Pn (y1 , . . . , yn) | ¬φ | (φ ^ φ) | ◻φ | @x φ

where Pn P PREDn for any n ě 1, and x , y1 , . . . , yn P VAR. The usual abbreviations for _,
Ñ, D, and◇ apply. We may drop parentheses for readability. If the free variables of φ are
among y1 , . . . , yn , we may write “φ(y1 , . . . , yn)” to indicate this.

Let S1 , . . . , Sn be some new symbols with well-defined syntax. We’ll indicate the lan-
guage obtained from L1M by adding S1 , . . . , Sn as L1M(S1 , . . . , Sn). Some symbols that
might be added include:

φ F ¨ ¨ ¨ | y1 « y2 | @φ | Óφ | F φ | @@x φ | Πx φ

where « is the identity relation, @ is an “actually” operator, Ó is a diagonalization operator
Lewis [1973] that does the opposite of @, F is a “fixedly” operator Davies and Humber-
stone [1980], and @@ is a quantifier over all actual objects. In what follows, L will just be
any arbitrary L1M(S1 , . . . , Sn) where S1 , . . . , Sn are among the symbols above.

Definition 2.1 (First-Order Modal Models). An L1M-model or modal model is an or-
dered tupleM = xW, R,D , δ, Iy where:
• W is a nonempty set (the state space);
• R Ď W ˆ W (the accessibility relation);
• D is a nonempty set (the (global) domain);
• δ : W Ñ ℘ (D) is a function (the local domain assignment), where for each

w P W , δ(w) is the local domain of w;
• I is a function (the interpretation function) such that for each Pn P PREDn ,

I(Pn ,w) Ď Dn .

By convention, whereM is a modal model, we’ll say thatM’s state space is WM ,
M’s accessibility relation is RM , etc. We’ll let Rrws B tv P W | wRv u.

LetM be an L1M-model. A variable assignment forM is a function assigning mem-
bers of its global domain to variables. Let the set of variable assignments onM be VA(M).
If a variable assignment g for M agrees with a variable assignment g1 for M on every
variable except possibly x, then g and g1 are x-variants, g „x g1. The variable assignment
grx ÞÑ as, or gx

a , is the x-variant of g that sends x to a.
Some notation: if α1 , . . . , αn is a sequence (of terms, objects, etc.), we may write “α”

in place of “α1 , . . . , αn”. α is assumed to be of the appropriate length, whatever that is
in a given context. When f is some unary function, we may write “ f (α)” in place of
“ f (α1), . . . , f (αn)”. We’ll let |α| be the length of α.

Since we want to consider operators like @, our semantics will be two-dimensional (as
suggested in e.g., [Davies and Humberstone, 1980, pp. 4-5]). That is, indices will have to
contain two worlds. The first world is to be interpreted as the world “considered as actual”,
and the second as the world of evaluation.
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Definition 2.2 (Satisfaction). The satisfaction relation, ,, is defined recursively, for
all L1M-modelsM � xW, R,D , δ, Iy, all w , v P W and all g P VA(M):

M ,w , v , g , Pn (x) ô xg(x)y P I(Pn , v)
M ,w , v , g , x « y ô g(x) � g(y)
M ,w , v , g , ¬φ ô M ,w , v , g . φ

M ,w , v , g , φ ^ ψ ô M ,w , v , g , φ andM ,w , v , g , ψ

M ,w , v , g , ◻φ ô @v1 P Rrvs : M ,w , v1 , g , φ

M ,w , v , g , @φ ô M ,w ,w , g , φ

M ,w , v , g , Óφ ô M , v , v , g , φ

M ,w , v , g , F φ ô @w1 P Rrws : M ,w1 , v , g , φ

M ,w , v , g , @x φ ô @a P δ(v) : M ,w , v , gx
a , φ

M ,w , v , g , @@x φ ô @a P δ(w) : M ,w , v , gx
a , φ

M ,w , v , g , Πx φ ô @a P D : M ,w , v , gx
a , φ.

If |x| ď |a|, thenM ,w , v , φras if for all g P VA(M),M ,w , v , gx
a , φ(x).

§3 The Two-Sorted Language
In order to prove our inexpressibility results, we need to translate ordinary English sen-
tences like (R) into a correspondence language. This language is just a two-sorted first
order language: one sort for objects, and one sort for worlds.

The signature for our two-sorted first-order language L2S contains VAR plus:

• SVAR = ts1 , s2 , s3 , . . .u (the set of state variables).

• PREDn{m =
!

Pn{m
1 , Pn{m

2 , Pn{m
3 , . . .

)

for each n ,m ě 1 (the set of n{m-place predi-
cates).

For a predicate Pn{m , n is the object-arity, while m is the state-arity. Thus, Pn{m takes exactly
n object variables and m state variables as arguments.4

The set of formulas in L2S or L2S-formulas is defined recursively:

φ F Pn{m (y1 , . . . , yn ; s1 , . . . , sm) | E(x; s1) | R(s1 , s2) | ¬φ | (φ ^ φ) | @x φ | @s φ

where Pn{m P PREDn{m , x , y1 , . . . , yn P VAR, and s , s1 , . . . , sm P SVAR.
For instance, here are the intended formalizations of (R) and (NR), where s˚ is meant

to be interpreted as the actual world:

Dt (R(s˚ , t) ^ @x (Rich(x; s˚) Ñ Poor(x; t))) (3)
@s (R(s˚ , s) Ñ Dt (R(s , t) Ñ @x (Rich(x; s) Ñ Poor(x; t)))). (4)

4We’ll use “;” to separate object variables and state variables.
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Definition 3.1 (Two-Sorted Models). An L2S-model or two-sorted model is an or-
dered tupleM = xW,D ,Vy where W and D are nonempty sets, and V is a function
(the valuation function) such that:
• for each Pn{m P PREDn{m , V (Pn{m) Ď Dn ˆ W m ;
• V (E) Ď D ˆ W ;
• V (R) Ď W ˆ W .

We are usually interested in the correspondence between L2S and L1M-models.

Definition 3.2 (Model Correspondents). LetM = xW, R,D , δ, Iy be a L1M-model. A
two-sorted correspondent ofM is a L2S-modelM = xW,D ,Vy such that:
• for all P P PREDn{1, V (P) � txa; wy | xay P I(P,w) u;
• V (E) � txa; wy P D ˆ W | a P δ(w) u;
• V (R) � R.

The satisfaction and consequence relations ( forL2S are just the standard ones for first-
order logic with two sorts. We can now translate in the standard way every L1M-formula
into L2S.

Definition 3.3 (Standard Translation). Let φ be a L-formula, and let s , t P SVAR. The
standard translation of φ wrt xs , ty, STs ,t (φ), is defined recursively:

STs ,t (Pn (x)) � Pn (x; t) STs ,t (@φ) � STs ,s (φ)
STs ,t (x « y) � x « y STs ,t (Óφ) � STt ,t (φ)
STs ,t (¬φ) � ¬ STs ,t (φ) STs ,t (@x φ) � @x (E(x; t) Ñ STs ,t (φ))
STs ,t (φ ^ ψ) � STs ,t (φ) ^ STs ,t (ψ) STs ,t

(
@@x φ

)
� @x (E(x; s) Ñ STs ,t (φ))

STs ,t (◻φ) � @t1 (R(t , t1) Ñ STs ,t1 (φ)) STs ,t (Πx φ) � @x STs ,t (φ)
STs ,t (F φ) � @s1 (R(s , s1) Ñ STs1 ,t (φ))

where t1 is the next state variable not occurring anywhere in STs ,t (φ).

Lemma 3.4 (Translation). LetM be an L1M-model, M a two-sorted correspondent
for M, w , v P WM , g P VA(M), g P VA(M) (where g(x) � g(x) for x P VAR),
s , t P SVAR, and φ an L-formula. ThenM ,w , v , g , φ iffM, gs ,t

w ,v ( STs ,t (φ).

Proof: An easy induction on formulas. ∎

With this result, we can define expressivity in the following manner:
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Definition 3.5 (Expressivity). A set of L-formulas Γ(x) expresses an L2S-formula
α(x; s , t) if α is equivalent (in L2S) to STs ,t (Γ) (= tSTs ,t (φ) |φ P Γu). A set of L-
formulas Γ(x) diagonally expresses an L2S-formula α(x; s) if α is equivalent to
STs ,s (Γ).

In what follows, we will focus on diagonal expressivity for simplicity, noting that the
results below apply equally to the more general notion of expressibility.

§4 Bisimulation
We now come to the notion of a bisimulation for ordinary first-order modal logic. This
notion can be found in, e.g., van Benthem [2010]; Fine [1981]; Sturm and Wolter [2001];
Yanovich [2015]. However, we add clauses designed to ensure modal equivalence for for-
mulas involving new symbols like @.

Definition 4.1 (Bisimulation). LetM andN be L1M-models. An L1M-bisimulation
betweenM and N is a nonempty multigrade relation Z (so without a fixed arity)
such that for all w , v P WM , all w1 , v1 P WN , all fininte a P DM , and all finite b P DN ,
where |a| �

ˇ

ˇb
ˇ

ˇ � n, we have that Z(w , v , a; w1 , v1 , b) implies:

(Atomic) @m P N@Pm P PREDm @α, β where |α| �
ˇ

ˇβ
ˇ

ˇ � m, if for each i, there is a
j ď n such that αi � a j and βi � b j , then: xαy P IM (Pm , v) iff

@

β
D

P IN (Pm , v1)

(Zig) @u P RMrvs Du1 P RN rv1s : Z(w , u , a; w1 , u1 , b)

(Zag) @u1 P RN rv1s Du P RMrvs : Z(w , u , a; w1 , u1 , b)

(Forth) @α P δM (v) Dβ P δN (v1) : Z(w , v , a , α; w1 , v1 , b , β)

(Back) @β P δN (v1) Dα P δM (v) : Z(w , v , a , α; w1 , v1 , b , β).

We may write “M ,w , v , a Ô N ,w1 , v1 , b” to indicate that there is a bisimulation Z
betweenM and N such that Z(w , v , a; w1 , v1 , b) (where possibly |a| �

ˇ

ˇb
ˇ

ˇ � 0). The
notion of an L1M(S1 , . . . , Sn)-bisimulation betweenM and N is defined similarly,
except one must add the condition(s) below corresponding to each Si :

(Eq) @n ,m ď |a| : an � am iff bn � bm

(Act) Z(w , w , a; w1 , w1 , b)

(Diag) Z(v , v , a; v1 , v1 , b)

(Fixedly-Zig) @u P RMrws Du1 P RN rw1s : Z(u , v , a; u1 , v1 , b)

(Fixedly-Zag) @u1 P RN rw1s Du P RMrws : Z(u , v , a; u1 , v1 , b)
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(@@-Forth) @α P δM (w) Dβ P δN (w1) : Z(w , v , a , α; w1 , v1 , b , β)

(@@-Back) @β P δN (w) Dα P δM (w1) : Z(w , v , a , α; w1 , v1 , b , β)

(Π-Forth) @α P DM Dβ P DN : Z(w , v , a , α; w1 , v1 , b , β)

(Π-Back) @β P DN Dα P DM : Z(w , v , a , α; w1 , v1 , b , β).

The (Act), for instance, can be derived as follows. Suppose we introduced a relation
R@ Ď W2 ˆ W2 into models, and that we treated @ as a normal box operator. We could
derive the truth conditions for @ by restricting to the class of models where wvR@w1v1 iff
w � w1 � v1. Then the usual zig-zag clauses for @ just reduce to (Act). The same method
applies to the other modal operators.

The standard results regarding bisimulations all carry over straightforwardly:

Definition 4.2 (Modal Equivalence). Let M and N be L1M-models, where w , v P

WM , w1 , v1 P WN , a P DM , and b P DN (where |a| �
ˇ

ˇb
ˇ

ˇ). Then xM ,w , v , ay and
@

N , w1 , v1 , b
D

are L-equivalent or modally equivalent if for all L-formulas φ(x)
(where |x| ď |a|),M ,w , v , φras iffN ,w1 , v1 , φrbs. In such a case, we may write
“M ,w , v , a ”S1 ,...,Sn N ,w1 , v1 , b”, where L � L1M(S1 , . . . , Sn).

Theorem 4.3 (Bisimulation Implies Modal Equivalence). SupposeM and N are L1M-
models, where w , v P WM , w1 , v1 P WN , a P DM , b P DN , andM ,w , v , a ÔS1 ,...,Sn

N ,w1 , v1 , b. ThenM ,w , v , a ”S1 ,...,Sn N ,w1 , v1 , b.

Corollary 4.4 (Translation Implies Invariance). Let φ(x; s , t) be anL2S-formula. If φ is
equivalent to the translation of some L1M(S1 , . . . , Sn)-formula, and if we have that
M ,w , v , a ÔS1 ,...,Sn N ,w1 , v1 , b, then for any two-sorted correspondents M and N,
M ( φra; w , vs iff N ( φrb; w1 , v1s. Equivalently, if xM ,w , v , ay and

@

N ,w1 , v1 , b
D

have two-sorted correspondents that disagree on φ, then φ is not expressible as a
L1M(S1 , . . . , Sn)-formula.

§5 Inexpressibility

We now turn to showing that (R) is not expressible in L1M(@)—in fact, not even in L1M(«
,@, Ó, F ). We’ll also show that (NR) is not expressible in L1M(«,@,Π). In both cases,
we construct two bisimilar models that disagree on the two-sorted formalization of the
English sentence in question, and then invoke Corollary 4.4. We start by presenting a
proof that L1M(@) cannot express (3).
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Let N´ B Z ´ N. Our two modelsM1 andM2 are pictured in Figure 1. The global
domain of each model is just Z and the accessibility relation is universal throughout. The
world w is our actual world, where every positive integer is rich (top half of circle), and
every negative integer is poor (bottom half of circle). For each nonempty finite subset S of
N, there is a world vS where the members of S don’t exist, and otherwise the rich and the
poor are flipped with respect to w; so at vS, the negative integers are rich, and the positive
integers not in S are poor, and the positive integers in S don’t exist. The extension of all
other predicates is empty. The only difference betweemM1 andM2 is thatM2 includes
an additional world vH, where no integer fails to exist, and where the rich and poor are
completely flipped with respect to w.

N

N´

w

Rich

Poor

N´

N ´ S

vS
Rich

Poor

M1

@S Ď N

S finite
S ,H

N

N´

w

Rich

Poor

N´

N ´ S

vS
Rich

Poor

N´

N

vH

Rich

Poor

M2

@S Ď N

S finite
S ,H

Figure 1: L1M(@)-bisimilar models disagreeing on (R). The top half of each circle satisfies
Rich, while the bottom half satisfies Poor; at each vS, the members of S do not exist.

xM2 ,w ,wy satisfies (R), but not xM1 ,w ,wy. But it turns out thatM1 , w , w ”@ M2 ,w ,w.
In fact,M1 ,w ,w Ô@ M2 ,w ,w. The reason is that each v-world looks isomorphic relative
to first-order logic to every other v-world sinceL1M(@) can only quantify over the existent
objects. So at any given stage of construction of our bisimulation, we can treat each link
between worlds and elements as if they’re partial segments of an isomorphism between
the two worlds considered as first-order models. Of course, we need to make sure that
when we shift to new worlds, the elements linked still constitute a partial segment of an
isomorphism between the new worlds. But as we’ll see, this can be done.

Theorem 5.1 (Inexpressibility of (R)). M1 ,w ,w Ô@ M2 ,w ,w. But M2 ,w ,w , (3)
even thoughM1 ,w ,w . (3). Hence, (3) is not expressible in L1M(@).

We show explicitly in the appendix how to construct a bisimulation between xM1 ,w ,wy

and xM2 ,w ,wy in stages. Keeping track of the details is tedious, but the idea is simple.
Basically, bisimulations are back-and-forth games that we might have to move to another
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accessible world to continue playing. So we just need to check that no matter where we
move the game in one model, we can find a matching spot to move the game in the other
model to keep playing.

Proof (Sketch): Our game starts at xM1 ,w ,wy and xM2 ,w ,wy. Clearly, if we just
play the back-and-forth game there, we’ll eventually build an isomorphism. Let’s
suppose, after moving the game around a bit, we’re now playing the back-and-forth
game at xM1 ,w , u1y and xM2 , w , u2y, having linked a P D1 to b P D2, where ai is
positive iff bi is. We’ll show that no matter where we move the game in one model,
we can move the game somewhere in the other model to keep playing. That is, we’ll
make sure that, wherever we move, if we want to extend the sequence of elements
with a new a (that exists at our new location inM1), we can find a matching b (that
exists at our new location inM2) such that a is positive iff b is (and similarly if we
want to extend the sequence of elements with a new b that exists at our new location
inM2).

Suppose first we move from u1 to w inM1. It’s easy to show that we can match
that move inM2 by moving from u2 to w.

Now suppose we move from u1 to some vS inM1. We need to match the move
inM2 with some vS1 , but we need to do so in such a way so that xM1 ,w , vSy and
xM2 ,w , vS1y don’t disagree over existence between a and b: we don’t want ai to exist
at vS but for bi not to exist at vS1 . To get around this, let T be any finite set with the
same cardinality as S such that ai P S iff bi P T. Then it’s straightforward to show
that we can match the move to vS inM1 with a move to vT inM2. Similarly if we
move from u2 to either w or some vS inM2.

Finally, suppose we move from u2 to vH in M2. The only way to match that
move inM1 is to move to some vS. We can do this as long as we make sure that
xM1 ,w , vSy and xM2 , w , vHy don’t disagree over existence between a and b. But
they won’t disagree so long as we move to a vS where no ai P S. So if S X tau � H,
then we can match the move from u2 to vH with a move from u1 to vS and continue
playing. At each stage, it’s easy to check that wherever we keep playing, we’ll only
match positives to positives, and negatives to negatives. ∎

Again, the reason this strategy works is essentially because, modulo what exists, the
vS’s and vH look like isomorphic first-order models, so linked elements can be treated
as partial isomorphisms between the worlds. In particular, when we move to vH, because
only finitely many elements are linked at a time, we can always find a matching vS where all
of the linked elements exist, and just keep extending the partial isomorphism as usual. A
similar strategy applies in showing thatM1 ,w ,w Ô«,E,@,Ó,F M2 ,w ,w, though the details
are messier.

However, this strategy fails when we try to show thatM1 ,w ,w Ô«,@,Π M2 , w , w. This
shouldn’t be surprising, since (R) can be expressed as (1). But it’s instructive to see why
the proof above fails. Consider what happens when we try to guarantee the Forth clause.
When we move from u2 to vH inM2, we try to match that move inM1 by moving from
u1 to some vS where S X tau � H. But the Π-Forth clause says that for any object a P D1
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that we pick, there must be a matching b P D2. But if we pick a non-existent in vS, we can
be forced to end the game. Since every integer exists at vH, we must pick a b that exists at
vH. But then by the Back clause, if we picked b again, we would need to match that pick
with an a1 that exists in vS. But by the Eq clause, a1 � a, and a doesn’t exist in vS. So we
can’t match that pick, and the game is over.

Now we’ll show that even L1M(«,@,Π) can’t express (NR). Consider the two models
N1 and N2 pictured in Figure 2. Again, the global domain of both models is Z, and the
accessibility relation is universal. This time, however, all of Z exists at every world. Our
actual world this time is z, where no integer is either rich or poor. For every finite set
S Ď N, there’s a world vN´S where all the positive integers are rich except for S, and where
all other integers are poor (so our old w is now just vN). And for every nonempty finite set
S Ď N, there’s a world vS like before, where the rich and poor are flipped with respect to
vN´S. Again, the only difference between N1 and N2 is the presence of vH in N2, where
every negative number is rich, and every positive number is poor.

Z

z

N ´ S

N´ Y S

vN´S

N´ Y S
N ´ S

vS

N1

S Ď N

S finite
S Ď N

S finite
S ,H

Z

z

N ´ S

N´ Y S

vN´S

N´ Y S
N ´ S

vS

N´

N

vHN2

S Ď N

S finite
S Ď N

S finite
S ,H

Figure 2: L1M(@,Π)-bisimilar models disagreeing on (NR).

xN1 , z , zy and xN2 , z , zy both agree that (3) is true. But they disagree on whether (4) is
true; without the presence of vH, there is no world for vN (our old w) where everyone rich
in vN is poor. Furthermore, N1 , z , z ”«,@,Π N2 , z , z. For even when we take existence into
account, all of the v-worlds are isomorphic to one another. So as long as we’re careful to

10
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move to the right worlds, we can always keep playing as if we’re building an isomorphism
between the worlds where the game is taking place. Thus:

Theorem 5.2 (Inexpressibility of (NR)). N1 , z , z Ô«,@,Π N2 , z , z. But N2 , z , z , (4)
whileN1 , z , z . (4). Hence, (4) is not expressible in L1M(«,@,Π).

The proof is similar to the one before. For instance, suppose we’re playing the back-
and-forth game at xN1 , z , u1y and xN2 , z , u2y, having linked a to b, and suppose we make
a move inN2 from u2 to vH. Then once again, the only matching move we can make inN1
is from u1 to some vS. But we can do this in general, so long as we pick an S that is disjoint
from tau; since in that case, ai will be in the extension of Rich at vS iff bi is in the extension
of Rich in vH. Similar reasoning as that above will show that matching moves can always
be made no matter where we jump in the model.

Unlike in the case of (R), however, this inexpressibility proof doesn’t extend to lan-
guages with Ó or with F . We can express (4) in either language with:

◻Ó◇Πx (@Rich(x) Ñ Poor(x)) (5)
F@◇Πx (@Rich(x) Ñ Poor(x)). (6)

But more complicated sentences can be constructed that reveal the expressive limitations
of even languages with Ó and F .

§6 Conclusion

It has often been noted, without proof, that (R) and (NR) are not expressible in L1M, even
when one adds an actually operator Bricker [1989]; Cresswell [1990]; Fara and Williamson
[2005]; Hazen [1976]; Sider [2010]. Proofs of this claim can be found in Hodes [1984b,a], but
involve rather complicated Henkin constructions that don’t seem to illuminate the source
of inexpressibility. In this paper, we’ve provided a simpler and more convenient method
of proving inexpressibility results in L1M using a modular notion of bisimulation. We’ve
seen that inexpressibility proofs via bisimulation are illuminating as they reveal the ways
in which L1M can be insensitive to the location of certain back-and-forth games.

Some questions naturally arise from these results. First, is there a more general formal
characterization of sentences like (E), (R), (NE), and (NR)? One syntactic characterization
was proposed in Kocurek [2015], but it’s open to debate whether this characterization is
accurate, or whether there is also a nice model-theoretic characterization of this class.

Second, is there a language weaker thanL2S that can express these kinds of sentences?
It has been argued by Bricker [1989] that adding second-order quantifiers suffices. In Cress-
well [1990], Cresswell defined a language (that happens to be a notational variant of a
quantified hybrid language without state variables as formulas) which he argued also suf-
fices to express these kinds of sentences.5 In both cases, heuristic arguments are given in
support of the claim that these languages can express any sentence of the same kind as (E),

5However, Cresswell [1990] also shows that if « is dropped and R is universal, then this language is as
expressively powerful as L2S without «.

11
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(R), (NE), and (NR). But without an answer to the first question, no formal proof of these
claims can provided.6

§A Proof of Theorem 5.1
To prove Theorem 5.1, we introduce a helpful definition:

Definition A.1 (Partial Isomorphism). LetM andN be modal models, let w , v P WM ,
and let w1 , v1 P WN . A partialL1M-isomorphism between xM ,w , vy and xN ,w1 , v1y

is a finite injective map ρ : D Ñ D1 such that:
(Predicate) @m @Pm P PREDm @a1 , . . . , am P dom (ρ) : xa1 , . . . , amy P IM (Pm , v) iff

xρ(a1), . . . , ρ(am)y P IN (Pm , v1)

(Existence) @a P dom (ρ) : a P δM (v) iff ρ(a) P δN (v1).

The set of partial isomorphisms between xM ,w , vy and xN ,w1 , v1y will be PARM ,w ,v
N ,w1 ,v1 .

When theM andN are clear, we’ll drop mention of them.

Now, at stage 0, set Z0 � txw ,w; w ,wyu. Next, define the following:

ZAct
i �

␣

xw ,w , a; w ,w , ρ(a)y
ˇ

ˇ Du , u1 : xw , u , a; w , u1 , ρ(a)y P Zi and ρ P PARw ,u
w ,u1

(

ZZig
i �

$

&

%

xw , vS , a; w , vρ1rSs , ρ
1(a)y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Du , u1 : xw , u , a; w , u1 , ρ(a)y P Zi , where
ρ P PARw ,u

w ,u1 and ρ Ď ρ1 P PARw ,vS
w ,vρ1rSs

and
dom (ρ1) Ě S

,

.

-

ZZag
i �

$

&

%

A

w , vρ1´1rSs , a; w , vS , ρ
1(a)

E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Du , u1 : xw , u , a; w , u1 , ρ(a)y P Zi , where
ρ P PARw ,u

w ,u1 and ρ Ď ρ1 P PAR
w ,v

ρ1´1rSs

w ,vS and
ran (ρ1) Ě S

,

.

-

Y

"

xw , vS , a; w , vH , ρ(a)y

ˇ

ˇ

ˇ

ˇ

Du , u1 : xw , u , a; w , u1 , ρ(a)y P Zi and
ρ P PARw ,u

w ,u1 , where S X dom (ρ) � H

*

ZForth
i �

"

xw , u , a , b; w , u1 , ρ1(a), ρ1(b)y

ˇ

ˇ

ˇ

ˇ

xw , u , a; w , u1 , ρ(a)y P Zi , where ρ Ď ρ1 P

PARw ,u
w ,u1 and b P δ1(u) X dom (ρ1)

*

ZBack
i �

"

@

w , u , a , ρ1´1(b); w , u1 , ρ1(a), b
D

ˇ

ˇ

ˇ

ˇ

xw , u , a; w , u1 , ρ(a)y P Zi , where ρ Ď

ρ1 P PARw ,u
w ,u1 and b P δ2(u1) X ran (ρ1)

*

.

Then set: Zi`1 � Zi Y ZAct
i Y ZZig

i Y ZZag
i Y ZForth

i Y ZBack
i . Finally, set Z �

Ť

iPω Zi .

Lemma A.2 (Trivial Observations). If
@

w , u , a; w , u1 , b
D

P Zi , then u � w iff u1 � w,
and if ρ P PARw ,u

w ,u1 , then ai P N iff ρ(ai) P N.

6See Kocurek [2015] for one possible formal answer to this question.
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Lemma A.3 (Partial Isomorphisms in Z). For all i ě 0, and all
@

w , u , a; w , u1 , b
D

P Zi ,
there is a partialL1M-isomorphism ρ between xM1 ,w , uy and xM2 ,w , u1y such that
ρ(ak ) � bk for 1 ď k ď |a|.

Proof (Sketch): By induction on i. This clearly holds for the i � 0 case. Now suppose
that every member of Zi has the stated property. Show that for each condition C,
every member of ZC

i has the property, from which it will follow that every member
of Zi`1 has the property. This is automatically guaranteed for ZZig

i , ZBack
i , and ZForth

i .
ZZag

i is almost immediate, but elements from the second listed set must be checked.
Checking ZAct

i is tedious, but straightforward. ∎

We now turn to the proof of Theorem 5.1.

Proof (Theorem 5.1): Let
@

w , u , a; w , u1 , b
D

P Z. Then
@

w , u , a; w , u1 , b
D

P Zi . By
Lemma A.3, there’s a partial isomorphism ρ between xM1 ,w , uy and xM2 ,w , u1y

such that ρ(a) � b. Hence, (Atomic) is met. As for the other conditions:

Act: By definition of ZAct
i ,

@

w ,w , a; w ,w , b
D

P Zi`1. ✓

Zig: If u moves to w, then this case is covered by the Act-case. So suppose instead
u moves to some vS. It suffices to show that xw , vS , a; w , vρ1rSs , ρ1(a)y P ZZig

i
for some suitable ρ1 Ě ρ. If S Ď dom (ρ), then let ρ1 � ρ. Otherwise, let
b1 , . . . , bn P S ´ dom (ρ). Pick the least b1

1 , . . . , b
1
n P N ´ ran (ρ) and set ρ1 �

ρ Y txbi , b1
iy | 1 ď i ď n u. It suffices to show that ρ1 P PARw ,vS

w ,vρ1rSs
. Let a P

dom (ρ1). By Lemma A.2, a P I1(Rich, vS) iff ρ(a) P I2(Rich, vρ1rSs). As for
Poor, a P I1(Poor, vS) iff a P N ´ S iff (by injectivity) ρ1(a) P N ´ ρ1rSs iff
a P I2(Poor, vρ1rSs). ✓

Zag: We just need to check the case where u1 moves to vH. But by definition, for
any S such that S X dom (ρ) � H (which will exist since dom (ρ) is finite),
xw , vS , a; w , vH , ρ(a)y P ZZag

i . ✓

Forth: Let b P δ(u). WLOG, assume b < dom (ρ). If b P N´, then just let b1 be
the least element in N´ ´ ran (ρ). Otherwise, let b1 be the least element in
N ´ ran (ρ). There are only three cases to consider:

(i) u � u1 � w. By Lemma A.2, b P I1(Rich,w) iff b1 P I2(Rich,w). ✓
(ii) u � vS and u1 � vρrSs. Then b < S and thus b1 < ρ1rSs (since, according to

our construction, S Ď dom (ρ), and so ρrSs � ρ1rSs). So b P I1(Rich, vS)
iff b1 P I2(Rich, vρrSs). ✓

(iii) u � vS and u1 � vH. Since b P δ1(u), (Existence) is still upheld. And
again, b P I1(Rich, vS) iff b1 P I2(Rich, vH). ✓

13
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Back: As above, except if b1 P N, you pick the least b P N ´ dom (ρ) in all cases
except where u � vS and u1 � vH, in which case, you pick the least b P N ´

(dom (ρ) Y S). ✓ ∎
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