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Abstract

What follows is a collection of (attempted) solutions to some of the past
prelim problems in preparation for Part I (the Metamathematics part) of the
prelims in the Group in Logic at UC Berkeley. The scope of these prelim prob-
lems includes model theory, recursion theory, and incompleteness results. Al-
though most of the material is covered in the Math 225 series at Berkeley, some
of the material goes beyond what is taught in those courses. For references,
see the following recommendations:

(i) Model Theory: Hodges [2], Marker [4]
(ii) Recursion Theory: Rogers [5], Soare [6]
(iii) Arithmetic: Kaye [3] (and for fun, Boolos [1])

Text in green mark hyperlinks to other problems in the document, usually
followed by a page number in case you're reading this on paper. The header
is always hyperlinked to the beginning of the section. Text in blue are side re-
marks about the current solutions. Text in red is math mode. I've included the
problem statements, for completeness, but have taken the liberty of rewording
things here and there.

I cannot guarantee that these solutions are 100% accurate, and they are
currently incomplete. The date on this page is the date of the most recent
update. If you find errors, if you have solutions to problems that don’t have on
here, or if you have an alternative solution, please let me know!'

! Many thanks to Russell Buehler, Alex Kruckman, Adam Leénikowski, Lisha Li, and Michael
Wan for their suggestions, corrections, and insight in working through these problems. Also, many
thanks to Tom Scanlon and John Steel for their guidance and hints.
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Notes on Notation

Model Theory: If A, B, M, etc. are models, then their respective domains are A,
B, M, etc.. The diagram of A is denoted “Diag (A)”, the elementary diagram
“ElDiag (A)”.

When building Ehrenfeucht-Mostowski models, I follow Hodges [2] and
call the linear order used to build the Ehrenfeucht-Mostowski model the
spine of the model. If (/, <) is the spine of the model, I use “Hull (/)” to
denote the Skolem hull over the order-indiscernibles indexed by /.

Recursion Theory: As usual, “¢,” denotes the ¢ recursive function in some fixed
enumeration. “¢.(k) |” is true when ¢, on input k eventually converges;
“¢.(k) 17 is true when ¢, on input k diverges. “¢, (k) |” is true when ¢, on
input k converges by stage s of the computation. “W,” denotes the domain of
¢., i.e. the ¢" re set in some fixed enumeration, and “W,,” denotes the s™
stage of the construction of W,.

If f is a function, then “¢/” denotes the ¢ f-recursive function, i.e. the ¢™
function that’s recursive relative to oracle f. If A is a set, then “¢” denotes
the ¢™ A-recursive function. Similarly for “W/” and “Ww"”.

In the context of recursion theory, if A is a set, then “A(n)” means “n € A”,
and “—~A(n)” means “n ¢ A”. The characteristic function of A, y,, is defined as

follows:
() 1 if A(n)
n) =
o 0 if ~A(n)

We let “A” denote the complement of A (relative to IN), so “A(n)” is the same
as “—A(n)”.

The following is a list of sets (and their complexity) that appear:

E) K={e|gcle) |} = {e| Wele)}

=9 Fin = {e| [W.| < 8o}

(I1)) Inf:={e| [W,| = Ny}

(I1) Tot:={e|Vx¢.(x) |} = {e| W. = N}

(Z)) Cof == {e| W, is cofinite} = {e| N — W,| < Ny}

(ZD Rec = {e| W, is recursive }
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Peano Arithmetic: PA is the theory of Peano arithmetic, Q is the theory of Robin-
son arithmetic (i.e. PA without an induction schema). If n € N, then “n”
denotes the numeral corresponding to » in the language of PA. If ¢ is a for-
mula, then "¢' is the godel number of ¢ in some standard fixed coding. For
readability, I also use "¢' for the godel numeral (as opposed to "¢").

The following is a list of functions, formulae, and sentences (and their
complexity) that appear throughout:
(A9) Seq(s) = “s codes a sequence of numbers”
(A9) |h(s) == “the length of sequence s”
(A?) Prf; (s, x) = “s codes a proof in 7' of sentence x”
(EY) Prvr (x) := 3s Prir (s, x)
(I1%) Con(T) := —Prvs (L")
(X)) Saty (x,y) = “x codes a X sentence that’s satisfied by y”

Throughout, I simply assume PA is both consistent and pretty smart, with-
out proof.
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June 2013

vy WARNING 4, Since I took the June 2013 prelim, I was required to write
solutions to these problems. And because I'm OCD, some of these answers
are extremely lengthy, esp. problems 2 and 3 (though, to be honest, I didn’t
see any other way. . .). Earlier prelims will be more representative.

1. (a) Show that there are two disjoint Zg sets A and B of natural numbers such
that there is no A) set C with A = C and C n B = .

(b) Show that there is no complete X%-sound 7" = PA such that 7" is A).

> ANSWER (a): Let S be a X! set. Define the sets:

A= {e] ¢ (e)
B:= {e]| ¢ (e)

Suppose C > A was A and C n B = . Then for some d:

§ B 1 ifxecC
%(@{0 if x¢é C

0}
1}

But now consider whether d € C:

deC=¢5(d)=1=deB=CnB#J= 1
d¢C=¢5(d)=0=>decA=ALC = |

Hence, there cannot be such a A set C.? O

% This is basically the proof that are two X recursively-inseparable sets, except with oracles. The
proof generalizes to any X0 for n € w, mutatis mutandis.
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» ANSWER (b): First, let’s recall some definitions. If 7 > PAand A < I,
we say that 7 weakly represents A with formula o(x) if A(n) & T +
a(n). We say T strongly represents A with a(x) if T weakly represents
A with «(x) and in addition —~A(n) < T + —a(n). It’s a standard result
that PA weakly represents all ¥ sets, and strongly represents all A? sets.

Now, let 7 = PA be complete and X9-sound.

Cramv (1): T strongly represents every X9 set with some X{-
formula.

» PROOF (1): Suppose A is a X9 set. Since PA weakly represents
A, there is a ¥{-formula «(x) such that, for all n € N, A(n) <
PA — a(n). Since PA < T, A(n) = T + a(n). And since T is
20-sound, 7 + «(n) = A(n). So T weakly represents A with «(x).

We need to also show: —A(n) < T —a(n)

(<) Suppose 7" + —a(n). Since 7 is consistent, 7 is II%-sound,
and hence —A(n). O

(=) Suppose —A(n). Since T is complete, either 7 -~ «(n) or
T+ —a(n). If the former, then by X-soundness, A(n) would
be true, 1. Hence we must have 7' - —a(n). O

It’s straightforward to check that this implies that 7 also strongly
represents every I19 set with a I1%-formula.

Now, let A and B be 22 inseparable sets (which exist by part (a)).
Let’s say that:

A(n) < Ix A'(x,n)
B(n) < 3x B'(x,n)

where A" and B’ are I relations. Let 7 represent A’ and B’ with the
1%-formulae « and S respectively. Now, define the set:

C:={n|T+ Ix (a(x,n) AVz<x—B(z,n))}

For brevity, let y(u) = 3x (a(x,u) A Yz < x —B(z,u)), so that we have
C = {n| T + y(n) }. Notice that y is .
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Suppose for reductio that 7 was A). We’ll show that C AJ-separates
A and B, contrary to hypothesis.

Cis Ag: Since 7 was Ag—that is, for any sentence ¢, we can decide

whether or not 7' |- ¢ in a A) way—C will be as well. /

AcC:Ifne A, thenn¢ B, since An B= . So Yz —B(z,n), and hence

v(n), would be true.

CLamm (2): T weakly represents every X) set with some
¥)-formula.

» PROOF (2): Let S be a X set, where S (n) < 3x R(x,n) for
some I1) set k. Let 7' represent R with the I1%-formula p(x, y).
We'll show S (n) < T + Jx p(x, n), which will suffice.

(=) Suppose S (n), i.e. 9x R(x,n), is true. Then there is a
k € N such that R(k,n). Since T strongly represents R,
T + p(k,n). Hence, T + Jx p(x,n). O

(<) Suppose T + Jx p(x,n), and suppose for reductio that
—S(n). Then Vx —R(x,n) is true, i.e. for each k € N,
—R(k,n). Since T strongly represents R, T - —p(k,n)
for each k£ € N. But then 7 is w-inconsistent, which
can’t be since 7 is E‘l)-sound, 1. O

¢ The (<) direction is unnecessary for this problem, but I've provided
a proof anyway.

Soby (=), T y(n),ie.neC. v

B n C = ¥: Suppose n € B. Then Jx B'(x,n) is true. So there is a least
k € N such that B'(k,n) is true. Since this is II, 7 - B(k,n). And
since AnB = 4, Vz < k —~a(z,n). Thisis X}, so T - Vz < k —a(z,n).
Hence, T + Jx (B(x,n) A Vz < x —a(z,n)). This sentence entails

—vy(n), so T + —y(n). Since T is consistent, n ¢ C. v/

Hence, C would separate A and B if 7 were A), 1.

3 This proof mimics the proof that Q is essentially undecidable.
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2.

Show that there is an A such that &5 <; A <; K.

Note: I present two different proofs. Both proceed by proving that there
are two Turing-incomparable sets (that is, two sets A and B such that A <; B
and B €7 A). Neither can be Turing-complete, so if A and B are r.e, then this
suffices. The first proof is easier, but it alone doesn’t guarantee these sets are
r.e. The second one is harder, but does ensure they're r.e.

» ANSWER (KLEENE-POST): We will proceed by constructing y, and
x in stages so that that y, = [, f; and x5 = [, g;. At the end of the
construction, we want the following requirements to be met for all e:

Requirement R,,: ¢ # xp
Requirement R, ;: ¢% # x4
Notice that our oracles are characteristic functions, not sets. This means

that if ¢/(n) | by stage s, then for any g = f, ¢¢(n) |= ¢.(n) by stage s
as well. This is crucial for Case 1 below.

Stage —1: Setf =g | = .

Stage 2¢: We will ensure that R, is satisfied. There are two cases to
consider.

Case 1: Thereisak ¢ dom (g,. ;) andau = f,, ; such that ¢"(k) |.
Then pick such a « and set f>, = u. Now pick ani € {0, 1} such
that ¢/* (k) # i, and set g, = gso—1 U {<k. i)}

Case 2: Otherwise. Then just set />, = />, ; and g,, = g5, 1.

Stage 2¢ + 1: We will ensure that R,, | is satisfied. There are two cases
to consider.

Case 1: There is a k ¢ dom (f>.) and a u © g,, such that ¢! (k) |.
Then pick such a « and set g,..; = u. Now pick an i/ € {0, 1}
such that ¢5*' (k) # i, and set foor 1 = foo U {(k, i)}

Case 2: Otherwise. Then just set f>..| = />, and g2, = g2..

At the end of the construction, we’re guaranteed that each R, is satis-
fied. So set y» = | J, /i and x5 J; g;. Suppose, for example, A <; B.
Then ¢’r§3 = ya for some d. But R, ensured this isn’t the case, L.
Similarly for B <; A. Hence, neither A nor B are Turing-reducible to
the other. O
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» ANSWER (FRIEDBERG-MUCHNIK): The following proof uses a priority
argument (see Rogers [5, chp. 10.2]).

The Idea

We will construct two r.e sets A, B in stages so that A = | J A, and
B = | J, B;, where A, is what we’ve constructed of set A by stage s, and
similarly for B,. Throughout the construction, we will ensure that each
of the following requirements is satisfied eventually for each e:

Requirement R,,: There is a number n,, such that either ¢”(n,,) 1 or
we have that ¢%(n,,) = 0 < ny, € A.

Requirement R, ;: There is a number n,..; such that either
¢4 (ny.+1) 1 or we have that ¢ (no,,1) = 0 < ny.,; € B.

The idea is that these requirements will guarantee that any function us-
ing B as an oracle will fail to be the characteristic function of A at some
point (and vice versa). Suppose each R, is satisfied by our construction,
and suppose for reductio that A <; B. That means that there is an ¢
such that ¢# = y,. But then by R,,, for some 1,,, we must have one of
two cases:

(1) ¢Z(ny.) 1: Since y, is total, ¢? # v, L.
(i) ¢Z(ny) = 0 < ny, € A: Since ny, € A < ya(n2.) = 1, we'll have that
‘Pf(”ze) =0 <$/YA(’72€,) =1 <:)XA(n2€) #= 0) SO again d)f 75)(%\) J—

Hence, there cannot be such an ¢, and thus A <; B. By similar rea-
soning, B <; A. Thus, it suffices to present a construction of two r.e
(nonrecursive) sets A and B in which each R; is eventually satisfied.

The Construction

To help us in this construction, we introduce a set of “movable mark-
ers” mg, my, mo, . .., which may be associated with numbers at any given
stage, and can be reassociated from stage to stage. If m, is a marker,
we'll let “m, " denote the number that m, is associated with at stage s.
The goal is to ensure that, at the end of the construction, 1, is associ-
ated with a number that witnesses R,.
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During the construction of A and B, we may find that, at some pre-
vious stage s, we ensured that , , is a witness to R,, but at some later
stage 7, we need to move that marker m, to another number m,, in
order to satisfy a different requirement R, thus losing our original wit-
ness to R,;. Thus, sometimes, the satisfaction of different requirements
will come into conflict. To resolve this issue, we will give priority to the
requirement with the smallest index. While this may mess up the sat-
isfaction of requirements with higher indices, we’ll show that this only
happens at most finitely often. Thus, we’ll ensure that each movable
marker eventually comes to a permanent halt, which will guarantee
that the requirement it’s associated with is satisfied for the rest of the
construction.

To help us keep track of which numbers are in A and B, we’ll use
signs, +4, +5, —a, —p. At any stage s, A, will be the set of numbers with
a +, sign by stage s (similarly for B, and +5). We’ll thenset A = [ J A,
and B = [ J, B,. Minuses are mostly for bookkeeping. A number with
—4 means it’s temporarily not in A; but a —, may at some later point be
changed to a +,, if for instance that number is needed as a witness to
a requirement of higher priority than the requirement that gave it the
—4 (similarly with —3). Note: Signs are associated with numbers, not
with their corresponding markers. Remember: m, is a marker, while
my.s is @ number.

Finally, for brevity, we’ll introduce some definitions. A number is
unmarked if no marker is associated with it; otherwise it’s marked. A
number is S-unsigned if it both lacks a + and lacks a —g; otherwise
it is S-signed. Similarly, we’ll use the terms S-positive, S-negative,
S-nonpositive, etc. as one would expect. Finally, we’ll say a number
is free in S if it is unmarked and neither it nor any number after it is
S -signed.

We now give the details of the construction. At each stage, we must
(i) assign new markers to numbers, (ii) add signs in order to fulfill some
new requirement, if possible, and (iii) reassign markers accordingly.

10
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Stage 0: Set Ay = By = (J. No markers are associated with any
numbers yet.

Stage s + 1: Suppose we’ve completed stage s. Thus, A, and B, are
defined, and the markers my, ..., m, | are exactly the markers assigned
to numbers (i.e. my, ..., m, |, are defined, but not m, ; for i > s). There
are two cases regarding what to do at stage s + 1.

Case s = 2e: First, set m,, to be the first number free in A after m, .

Next, search for a d < ¢ such that:

(1) (bg"&e(mZd,s) l: OJ and
(i1) m,, is A-nonpositive

If there is no such d, set m; ;.| = m; for all i < s, and go to the
next stage. Otherwise, pick the least such d, and give m,, , the sign
+4. In addition, give the sign —; to each B-nonpositive number
used in the computation of ¢§j€(m2d.s). Finally, reassociate markers
as follows. For all i < 2d, set m; ., = m;, (i.e. don’t move them).
For all i such that d < i < e (if there are any), set m,;, . to be the
first ¢ — d numbers that are free in B (in increasing order). Don’t
move any of the even-indexed markers.

Case s = 2¢ + 1: First, set m,, to be the first number free in B after

ms_» . Next, search for a d < ¢ such that:

. A\
(1) ¢L{;e(m2d+l,x) l: 0, and
(i) 72441, is B-nonpositive

If there is no such d, set m; ., = m,;, for all i < s, and go to the
next stage. Otherwise, pick the least such ¢, and give m,,,, the
sign +5. In addition, give the sign —, to each A-nonpositive num-
ber used in the computation of ¢2‘;(mgd+1“\,). Finally, reassociate
markers as follows. For all i < 2d + 1, set m; .| = m;, (i.e. don’t
move them). For all / such that d < i < e (if there are any), set
mo; s+ to be the first ¢ — d numbers that are free in A (in increasing
order). Don’t move any of the odd-indexed markers.

Note: The choice of d < i < e in the even case and d < i < e in the
odd case is simply to ensure that the index of the markers we move is
above the index of the chosen marker.

11
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Proof of Success

Let mov(d) be the maximum number of moves that marker 7, could
possibly make throughout the construction. Then:

(@ mov(0)=0
(b) mov(l) =1
(c) Ford > 1,mov(d) =mov(d — 1) + mov(d —2) + 1

Note that if we pick a least d satisfying the requirements, then we
only move markers with indices strictly above d. Hence, (a) and (b) are
easy to verify. We can verify (c) by induction, but I won’t do that here.

Now suppose m, has permanently stopped moving by stage s. Say
WLOG that d = 2e¢, and suppose that m, has a +, at stage s if it ever
will. If there is a +,, that means we found that ¢§;(md,5,) = 0. Let
bi,...,b, be the numbers in B, that were used in the computation of
¢ﬁ§(md“§.). So by construction, b4, ..., b, all have the sign —3.

The worry is that, at some point, one of the »;’s might be given the
sign + at some later stage r; in which case ¢” () could disagree with
¢§‘L(md..\-), since their respective oracles could give different answers to
“Do you have 5;?”. So we need to make sure that ¢” (m,,) doesn’t
disagree with ¢”’(m,,) about whether each b, is in the oracle (i.e. we
need to ensure that their computations are the same on input ).

Suppose, for reductio, that b, is given the sign + at a later stage 7,
and let’s say b; = m,;, (where k is odd). If k < d, then m,; would be
moved at stage 7, contrary to hypothesis. So k > 4. But then at stage s,
m; was placed after all the —5 signs at stage s; so m,;, could never have
been placed on b; after s, L. Hence, if m, has stopped moving, then no
b, could ever obtain a +z, and so ¢.(m,) = o (may) = ¢F(mas).

Hence, if m,, does have a +, sign, that means ¢." (m,) = ¢*(m,) =
0, satisfying R,. If m,, doesn’t have a +, sign, it means ¢”(m,) 1 or
¢%(my,) |# 0, in which case R, is still satisfied by , ;. Hence, since each
marker eventually stops moving, each R, will be satisfied eventually.
Furthermore, the process is clearly r.e.* O

4 It’s not recursive, since 7, may not move mov(d) times, or qbf,' (my) may be undefined un-
benownst to the computer.

12



June 2013

3. Let T be a theory of (Z, <).

(a) Show that T is finitely axiomatizable.

(b) Show that 7" has a prime model.

(¢) Show that 7 has a countable saturated model.

» ANSWER (a): Let U be the theory of discrete linear orders without
endpoints. U is finitely axiomatizable, and clearly U < 7. We’ll show
that 7 < U, and hence 7 = U. We’ll do this by showing that U is
complete (see Marker [4, p. 56-57]).

CrAiM (1): The models of U are isomorphic to models of the
form (L x Z, <), where L # (7 is a linear order," and where < is
interpreted lexicographically.

@ The linear order L doesn’t have to be a discrete linear order itself. Any ol’
linear order will do.

» PROOF (1): Clearly, A =~ (L xZ,<) = A = U. To show the

converse, let A = U, and let ~ be an equivalence relation over A
such that a ~ b iff a is only a finite distance away from /. Each
~-equivalence class [«] is isomorphic to (Z, <). So it suffices to
show that the ~-equivalence classes are linearly ordered. Define
the relation « between ~-equivalence classes such that d « e iff
forallacedand bee, a < b.

Reflexivity: Clearly [a] « [«]. v/

Asymmetry: Suppose [a] « [»]. Then for every ¢’ € [«a] and
every b' € [b], @ < b'. But since < is a linear order, /' <« o,
and hence [p] <« [a]. v

Transitivity: Suppose [[a] « [»] and [/] « [c]. Let @' € [a] and
¢ € [c]l. Thend < b for b’ € [[b]. Since b’ < ¢/, d < (.
Since ¢’ and ¢’ were arbitrary, [«] « [c]. v/

Hence, « is a linear order, and so A =~ (L x Z, <). O

13
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CLAIM (2): Forevery Ak U, A= {Z,<).

» PROOF (2): Let A:=(L x Z,<),and let M :=(Z, <). Let |a — b|

denote the distance between « and » (where |a — b| = o if a and
b are on different Z-chains).

We’ll show that 4 (player II) has a winning strategy for the
back and forth game G, (A, M) for each n € w. The worry in any
given n-game with V (player I) is that if V chooses two elements
from A in different Z-chains, then he has infinitely many elements
between them to choose from, whereas regardless of which ele-
ments from Z that 1 replies with, she’ll only have finitely many
to choose from. In such a scenario, V could drive 1 into a corner
until she runs out of options to choose from.

To ensure she avoids “being cornered”, 4 will have to make
sure that her choice of elements are spread out enough so that if
V does decide to try and corner her, J will always have a way to
respond, at least until the game ends.

This can be achieved if, for all k£ < n, the following require-
ment is satisfied after round &:

Ry If ay < --- < a; are the elements from A that have been
played, and m; < --- < my are the elements that have been
played from M (= Z), then for all i < k, either

(i) both |a;.; — a;| > 3" *and |m;, —m;| > 3% or
(i) |aip — ail = [mig —my| < 3"

Note: I don’t think it will work if the base is 2, but it should
work for base 3 or higher.

Suppose R, is satisfied after round &, and k < n. Then if two
elements from A, say «; and ;. are on different Z-chains, then
there’s still 3% > 3 many elements between m; and m;,, so V
can pick any of the elements between «; and «,.; and 3 will at
least be able to respond. If k¥ = n, then we’ll have a sequence
a, < --- < a, mapped to m; < --- < m,, so our map will be a

14
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partial embedding. So it suffices to show how these conditions
can be satisfied.

We proceed by induction. On round 1, it doesn’t matter which
elements the players choose. On round 2, if ¥ chooses an ele-
ment whose distance from the element picked in round 1 is no
more than 3”2 elements away, then 7 can respond by picking an
element the same distance away (in the same direction). Other-
wise, 7 can respond by picking an element exactly 3" * away (in
the same direction).

Now, suppose we’ve ensured each R, is satisfied for some k <
n. Let a, < --- < a; be the elements from A that have been
played, and m; < --- < my; be the elements from Z that have
been played. So by the inductive hypothesis, for 1 < i < k, either
laiv1 —a;| > 3" <|miyy —my| ot |aiy — a;| = |miy —my| < 377K

First, let’s suppose V chooses a new element a € A to play. If
a < ay, and if |a; — a| is finite, 3 can play m = m; — |a — a;| to
satsify R, ;. If instead |a; — «| is infinite, 9 can play m = m; — 3"
to satisfy R, . Similarly if « > «,.

If instead, for some i < k, a; < a < a,;,,, then there are two
cases to consider:

Case 1: |¢;, | — a;| < 3"*. By inductive hypothesis, [m,;,, — m;| =
\a;11 — a;|. So then 7 can play m = m; + |a — a;|, which satis-
fies Rk+1. v

Case 2: |a;,| — a;| > 3"*. By inductive hypothesis, |m,,; — m;| >
3"~k as well. There are three subcases to consider, depending
on how far away « is placed with respect to ¢; and «;, ;.

Subcase i: [a — ;| < 3" %), Then |a;,, — a| > 3"~ **1, But
since |m;,; — m;| > 3"7*, 3 can play m = m;+|a — a;|. This
will put |m —my| = |a —a;| < 3%V and |m;; — m| >
3=+ "so Ry, is satisfied.

15
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Subcase ii: |a, | —a| < 3"V, The strategy is similar to
the above, except now m = m; | — |a;y; — a|. v/

Subcase iii: ¢ —a;| < 3%V and |a;;; —a| > 3K,
Since |m;, —m;| > 3", split the regions into thirds,
each of size at least 3"~ (“+!) — 37=%~1_Then if 7 places
m somewhere in the middle region, |m — m;| > 3"~ (1
and |m,.; — m| > 3"+ So again, R,., is satisfied. v/

If V instead chose an element 2 € Z to play, then it’s only easier
for 9 to choose elements, since she may have infinitely options
instead (but she can follow the same basic strategy). Thus, we’ve
shown how 1 can win G,(A, M), building a partial embedding
with a; — m;. Hence, A = M. O

Hence, U is complete, so U = T. O

» ANSWER (b): By Claim (2) above, (Z, <) can be elementarily embed-
ded into any model of 7 via this elementary chain method. O
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» ANSWER (c): Let L,(x,y) be the formula which says, “There are at
least n-things between x and y (with x < y),” and let M, (x, y) say, “There
are at most n-things between x and y (with x < y).” Define:

Y, = {p(x)]| ¢ is atomic} U {L,(x,y), M, (x,y) | n € w}
T = {—¢(X)]| ¢ is atomic} U {—L,(x,y), ~M,(x,y) | n € w}
Z = 2+ U Z_

[ CLAIM: X is an elimination set for 7. ]

It will suffice to check that 9y /\_, v:(x,y), where ¢, € %, is equiva-
lent modulo 7 to a boolean combination of formulae from . But note
that, WLOG, we may assume that ¢; doesn’t have the form:

“y = x;”: otherwise, just replace every instance of y with x, and
remove the existential quantifier. Then we’re done.

”,

“xp < x;7 or “=(x; < x;)”: otherwise, we may pull this formula
outside the scope of the existential quantifier, and deal with the
reduced existential instead.

“xc # y": otherwise, we may replace this formula with
“((xx <y) v (y < x)),” and then use distributivity to pull the dis-
junction outside the scope of the existential quantifier. Then we
can deal with the reduced existential instead.

”,

“~L,(x;,y)” or “=L,(y,x;)”: in the first case, we may replace this
formula with “((y = x) v (y < x) v M, _(x,y)),” and then use
distributivity to pull the disjunction outside the scope of the ex-
istential quantifier. Similarly for the second case.

“—~M,(x;,y)” or “—=M,(y, x;)”: in the first case, we may replace this
formula with “((y = x;) v (y < x¢) v L,41(x,y)),” and then use dis-
tributivity to pull the disjunction outside the scope of the existen-
tial quantifier. Similarly for the second case.

17
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e

» PRrROOF: Given the above, it suffices to check formulae of
this form (I assume that the indicies are appropriately bounded
below, and that the k., /,;,... are also appropriately indexed; it
would be messy to write out in full detail):

dy (/\(xa <y) A /\ (y < xp) /\Lk(_(xc,y)/\
/\Ll(/ yv xd /\Mm(Xevy) A /\Mmf(y’ xf))
e f

Assuming that none of these big conjuncts inside the existential
quantifier is empty, we may replace the above formula with the
following formula:

/\ xa < xb /\Ll,/Jrl Xa, xd /\(xe < Xg — Mnefl(xea xa))/\
a,b

a,d a.e
/\ Ly (xq, x5) A /\ Ly 11(Xe, Xp) A /\ Ly (xe, xp) A
a,f b,c b.e

/\(Xb < Xf — m/_](xb,)(f A /\Lk +1‘[+1(X(,Xd>

b.f

/\ (-x( < X — Mk —Ne—1 xu-xc /\ Lk —Ne—1 xc’ xL)

ce
ke<n, Ne <k

/\Lk(,-+1(xc"xf') A /\le-&-l(xe,xd)/\
o f de
/\ (Xd < Xf — mp—lg—1 Xd,xf /\ le my—1 xf,xd)

a.f a.f
la<my my<lg
/\ [Ll (-xw xj) 74\ Mnc+m_/+l (xe, xf)]

e.f

If any of these are empty, you'll need to remove the appropriate
conjuncts. O
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Consider, now, the structure A = (Q x Z, <). We claim that A is a
countably saturated model of 7. To show this, it suffices to show that
A realizes every 1-type over finite parameters. Let X — A be finite, and
WLOG assume b; < --- < b, completely lists X.

Since X is an elimination set, any formula of the form ¢(x,5;) is
equivalent to some boolean combination of:

o x<b; o L,x,b)fornew
o x> b o L,(b,x)fornew
e x=2b; o M,(x,b;)fornew

o M,(by,x)fornew

Hence, the only complete 1-types over X are those which are (con-
sistent with 7" and the fact that »; < --- < b, and) completions of:

Case i: {x = b;} for some | < i < n. A realizes this trivially. /

Case ii: {L,(x,b;), M,(x,b;)} for some n € w and some | < i < n. Since
b, is on a copy of Z, A realizes this by the unique (n+1)" elemment
before b;. v/

Case iii: {L,(b;, x),M,(b;,x)} for some n € w and some | < i < n.
Since b; is on a copy of Z, A realizes this by the unique (n + 1)"
elemment after b,. v/

Caseiv: {L,(x,b))| ne w}. A realizes this with any element of in a
Z-chain strictly before b,’s Z-chain. v/

Casev: {L,(b,,x)| new}. Arealizes this with any element of in a Z-
chain strictly after »,’s Z-chain. v/

Case vi: {L,(b;,x),L,(x,b;11)| n€w} for some | < i < n. Since Q is
dense, between any two Z-chains in A, there will be another Z-
chain, so A realizes this with any element in a Z-chain between
b’s and b;,,’s Z-chain. v/

Hence, A realizes every |-type over X, so A is countably saturated
(since of course, Q x 7Z is countable). O
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4. Let f: N — N be a total recursive function. Show that there is a formula ¢(x)
in the language of PA such that:

(i) PA R ¢(n) for each n € N, and

(ii) for all n, f(n) < g(n), where g(n) is the least godel number of a proof of
¢(n) in PA.

» ANSWER: We start with a proof for a modified Fixed Point Lemma for
formulae:

CLAIM (1): For any formula ¢ (x,y) in £,,, there is an formula
¢(x) in L, such that for each n € N, PA - ¢(n) < ¢/(n, "¢(n)").

» PROOF (1): Define the (primitive) recursive functions:

‘O(n,y)" ifv="0(xy)
b , _ =
Sub, (v, ) {0 otherwise
‘O(n)" ifv="0(x)
b , _ =
Henly) {0 otherwise

Since these functions are recursive, PA strongly represents these
functions, with say the Al-formulae sub3 (v, 7, «) and subj (v, n, u)
respectively. Now, define:

a(x,v) = 3Ju Iw (subs (v, x,u) A subj(u,v,w) A ¥(x,w))
Finally, define ¢(x) = a(x, "@(v1,v,)"). Then:

PA - ¢(n) < a(n, @)
< Ju Iw [subj(‘a

1

,m,u) A suby(u, "', w) A y(n,w)]
< 3w [subf("a(n,v,)", @', w) A ¥(n,w)]
< ¥(n an, o))

< ¥(n,"o(n)")

where ‘@' = "a(vi, )" O
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Now, since f is recursive, PA can weakly represent the graph of f
with a X-formula, say G(x,y). The goal, then, is to devise a formula
¥ (x,v) which says “The sentence coded by v is not provable in a proof
whose godel number is less than or equal to f(x)”. Then, by the modi-
fied Fixed Point Lemma above, we can construct a sentence which says
“I am not provable in a proof of size less than or equal to f(n)”.

We let this formula be:

Y(x,v) =3y 3s [Gr(x,y) A s>y AVt < s—Prfpa (t,v)]

By Claim (1), there is a formula ¢(x) where PA |- ¢(n) <> y(n, "¢(n)").
Furthermore, notice that y/(x, v) is %, and so ¢(x) is as well.

CLAIM (2): For eachn e N, PA - ¢(n).

~

» PROOF (2): Suppose PA |/ ¢(n) for some n. Then certainly,
¢(n) is not provable in a proof of size less than or equal to f(n).
Hence, ¢(n) is true. But since ¢(n) is X%, and since PA proves all
true X%, PA - ¢(n), L. O

Since PA is X%-sound, and since PA - ¢(n) for each n € N, it follows
that each ¢(n) must be true, i.e. theyre provable but not in a proof of
size less than or equal to f(n). Hence, f(n) < g(n) for all n. O

5. (a) Show that a € M is definable iff for every elementary extension N > M,
and every automorphism o : N — N, o fixes g, i.e. o(a) = a.

(b) Show by example (with proof) that it may happen that « is not definable
but every automorphism o : M — M fixes a.

» ANSWER (a):

(=) Suppose a € M is definable by ¢(x). Let N > M. Thus,
N E Vx (p(x) > x=a). Then if o : N — N is an automor-
phism, we have that N = Vx (¢(x) <> x = o(a)), in which case
N EVYx (x=a < x=0(a)), ie. o(a) =a. O
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(<) Suppose a € M is not definable. Let:

T := EIDiag (M) u {a # ¢} u {¢(c) | M = ¢(a)}

where « is a constant from EIDiag (M), and c¢ is a new constant.

CramM: T is finitely satisfiable.

» PROOF: Suppose that some finite subset 7, < 7 is not
satisfiable. Then for some ¢;(c),...,¢,(c) € Ty, we have that
EIDiag (M) — A7, ¢i(c) — a = c. Since ¢ doesn’t occur
in EIDiag (M), EIDiag (M) + Vx (A, ¢i(x) > x = a). But
then by construction, A\, ¢;(x) would define a, since we
have M= Vx (x =a — AL_, ¢i(x)), L. O

Thus, by Compactness, 7' is satisfiable. Let N = 7. Then by
construction, M < N. Furthermore, there is a ¢ = b € N where
b # a satisfies the same type as a. Hence (by Marker [4, Lemma
4.1.5, p. 117]), there is an elementary extension of N (and hence
of M) such that there is an automorphism of this extension o
satisfying o(a) = b. O

» ANSWER (b): Note: There are many examples of these kinds of
structures. I have provided several examples for illustration.

Let £ = {¢;| i€ w}. Consider a model M in which every object
is named by a distinct constant except for one lonely element, a.
Then the only things you can say in this model are what things
are or are not named by this or that constant. And since formulae
are finite, and since there are infinitely many constants, ¢ won’t
be definable. But automorphisms must preserve the assignment of
constants, and hence M only has the trivial automorphism. O

Let £ = {<}. Consider (w;, <). Recall there are no non-trivial au-
tomorphisms of any ordinal (otherwise, well-ordering would guar-
antee that for any non-trivial automorphism o, there’s a least « for
which o(a@) # a. o(a) can’t be below «, since for 8 < a, o(8) = B.
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So o(a) > a. But o must preserve the order, so o can’t send any-
thing to 8 for @« < 8 < o (@), which means o isn’t surjective, 1).
Furthermore, since there are only countably-many formulae and
uncountably-many elements in w,, it follows that there must be
undefinable elements. O

e Let /L ={0,1,+, }. Consider R as our model. We can define:
— Subtraction: x — y = 1z(z + y = x).
- Negative: —x:= 1z(x +z=0).
— Order: x<y=3Judv(u#0Au=v-vA(y—x) =u
— Rationals: if ¢ = m/n € Q, where m,n € Z, then g == 1z(n -z =
m) (where +k := £(1 4+ --- + 1), k-times).

By part (a) and the above, every automorphism of R must fix Q.
Automorphisms must also preserve the ordering, since they pre-
serve all formulae. Hence, if € R, and o(r) = r+ € (for instance),
then the rationals between » and r + € have to be moved above r in
order to preserve the order; but o- must also fix them, |. Hence,
R has no non-trivial automorphism.

However, by part (a), if we can find an elementary extension
of R with non-trivial automorphisms, then R will have some un-
definable elements. In fact, C will do, since we can have automor-
phisms which don’t fix transcendentals. O

6. LetE={eccw|W,={xcw|dy ew(y+y=x)}}. Compute the position of
E in the arithmetic hierarchy.

» ANSWER: [ is the index set for the even numbers. Hence:

ecE<eW,={new|niseven}
< Vn (ne W, < niseven)
<Vn (neW, - 3dm <n(m+m=n))
~Vn () A
:1‘[(2)
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To show that E is I19-hard, we’ll show that Tot <, E. Let:

1 if ¢.(x/2) | where x is even
ﬂe,x)_{ 8e(x/2) |
1 otherwise

This function is recursive, so by s-m-n, there is a total recursive s(x)
such that f(e, x) = ¢,.)(x). So then:

ee Tot = Vx (de(x) |) = Vx (f(e,2x) |) = Vx (¢s)(2x) |) = s(e) e E
e ¢ Tot = Jx (go(x) 1) = Ix (f(e,2x) 1) = Ix (#.(2x) 1) =s(e)¢E

Hence ¢ € Tot iff s(¢) € E, which completes the reduction. O

\. J

7. Show that for any complete theory 7" having infinite models, there is a model
M &= T and a descending chain of elementary submodels M, = T (where
acw+1)sothat M= My > My > My > - > M, =2, M and M = M,
forallw e w + 1.

» ANSWER: Let 7* be the Skolemization of 7', and take M to be the
Ehrenfeucht-Mostowski model whose spine is Q U {4+, —o0}. Define
A, to be Hull ({c, | [r| <q|}). Consider the chain of models where M,
=M, M = ﬂ’lﬂ/i for 0 < i < w, and M, =), M;. We need to check
the following:

e Foreachaecw+ 1, M, = T. Each M, is the Skolem hull of some
subset of M. Since 7* has Skolem functions, it has a universal ax-
iomatization, and universally axiomatized theories are preserved
from superstructures to substructures. Hence, M, = 7. /

e Foreachijc w+ 1, wherei < j, M, > M, Suppose i # 0.
Then create an elementary embedding f;; : M, — M as follows.
First, have f;; (co) = ¢o. Next, have f;; (cxa+1/)) = cxa+1/). Fi-
nally, if n/(1 + 1/j) = m, then have {;; (c,) = cn.(1+1/:)- The density
[—(1 4 1/i), (1 + 1/i)] ensures we will be able to find a match for
any ¢, withne [—(1 + 1/j), (1 + 1/j)].

For i = 0, > 1, we can compose maps, so we just need to
consider i = 0, j = 1. As before, have f,(c4>) = ¢4, and have
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f1.0 (co) = co. For everything else in between, simply scale » appro-
priately. The density of [—0, +0| ensures we'll always be able to
find a match for ¢, with n € [—2,2]. /

e Foreachaew+ 1, M =~ M,. An isomorphism on linear orders
induces an isomorphism on the structures with those linear orders
as spines. Since any closed interval can be put into isomorphsim
with Q U {+x}, we get that M =~ M, fora e w+ 1. v O

8. Let £ be a language having at least one constant symbol. Let 7 be a consis-
tent £-theory which is universally axiomatized. Prove that the following two
conditions are equivalent:

AP: T has the amalgamation property: For any three models M, A, B &= T,
with M < A, B, there is a model D = T and embeddings f : A — D,
g:B—D,suchthat f | M =g | M.

QFI: T satisfies quantifier-free interpolation, i.e. for any (disjoint) X, y,z, and
quantifier-free formulae ¢(x,y) and ¢/(y,2), if T + ¢(x,y) — ¢(9,2), then
there is a quantifier-free formula 6(y) so that 7' — ¢(x,y) — 6(y) and
T+603) —v(3.2).°

» ANSWER (AP = QFI): Suppose T ~ ¢(x,y) — ¥(y,z), where ¢(x,y)
and y(x,y) are quantifier-free. If 7 - —¢(x,y), then 6 = | will suffice.
Similarly, if 7 + ¢(y,7), then 0 = T will suffice. So assume 7' {/ —¢(x,y)
and T t* ¥(y,z). Let a, b, ¢ all be new constants added to the language,
and consider the theory:

=T v {p@b)}u {ﬁH(E) ‘ g i:ec(lgirfie(g’f?;e and}

Since 7 is universally axiomatized, 7" will prove that a negated instanti-

ation of one of these axioms implies anything, and this negated instan-

tiation will be quantifier-free, so the rightmost set is nonempty.
Suppose I is not satisfiable. That means for some ¢, (y),...,6,(y) (all

quantifier-free), we have 7 + A_, —6,(b) — —¢(a,b), i.e. we have

> “T 1~ o(v)” is short for “T - Vv o(v)”, where o(7) is a formula
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T + ¢(a,b) — \/_, 6i(b). But we already have T - 6,(b) — y(b,c) for

1 <i<n,and thus T - \/\_, 6,(b) — (b, c). Hence, \/"_, 6;(7) can be
our quantifer-free interpolant. So it suffices to show that:

CraiM: [ is unsatisfiable.

» PROOF: Suppose for reductio that I is satisfiable. Let N & I.
Consider M = (b)  and A = {(a,by,,. First, note M = A< N.
Next, since 7 is universally axiomatized, 7 is preserved going
into substructures, so M, A = T. Furthermore, A = ¢(a, E), since
we had N = ¢(a,b) and since ¢(x,y) is quantifier-free. Finally,
we have that M = —6(b) for every quantifier-free 4(y) such that
T+ 6(3) — w(3.2).

Now, let:

X =T u Diag (M) u {~y(b,¢)}

Given this last statement, we claim:

CLAIM: X is satisfiable.

» SUBPROOF: Suppose not. Then by Compactness, for
some (literal) sentences o(b),...,0,(b) € Diag (M), we
have that T ~ A’ ,0.(b) — u(b,c). Since for each

i, oi(b) € Diag(b), A\, 0i(b) € Diag(M). So by con-

struction, — A", o;(b) € T, and hence N = — A’_, oi(b).

But then M = — A, oi(b), since M < N, and so

— A\, oi(b) € Diag (M), L. O

Take a model 8 = X. Then M < 8, so by the fact that T
has AP, there is a D = T such that we have M € A < D and
M < B < D. But since ¢(x,y) and y/(x,y) are quantifier-free, it
follows that O = ¢(a,b) » —(b,c), contrary to the supposition
that 7 + ¢(x,y) — ¥(3,2), L. O

This completes the proof. O
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» ANSWER (QFI = AP): The proof is a modification of the proof of the
Elementary Amalgamation Theorem (see Hodges [2, p. 135]). We’ll
see that QFI will be exactly the property we need to make this modified
proof go through.

Let M, A, B = T, with M < A, B. WLOG, we can arrange things so
that A n B = M. Consider the theory:

I':=T v Diag (A) u Diag (8)

Suppose I' has a model, say D" = I, with O :=D" | L. Then by
construction, M < A, B < D. Defining f(a) = a” and g(b) = b” for
aeA,be B,wellhave f | M = g | M. So it suffices to show that:

CrAamm: T is finitely satisfiable.

\. J

[ » PROOF: LetI, < I be finite. Let
o(m.a) = /\ {6(m.a)| 6(m.a) e Ty  Diag (A) }

w(m,b) /\{emE )efoleag(B)}

where m € M, a € A— M, and b € B — M. Suppose Iy has
no model. Then 7 | ¢(m,a) — —w(m,b). Since T doesn’t
ever mention @, b,m, T + YX,5,Z (¢(Xy) — —¢(3.Z)). So by
QFI, there is some 6(y) such that 7 + Vx,y (¢(x,y) — 6(y)) and
T V3.2 (067) — ~u(3.2))-

Now since Diag (A) — ¢(m,a), and A = T, we have A = 0(m).
But since ¢ is quantifier-free, it’s preserved going into substruc-
tures, so M = 0(m). Again, since ¢ is quantifier-free, we have
B 6(m). But then B = —y(m, b), and since i is quantifier-free,
we have Diag (8) - —y/(m, b), L. O

So by Compactness, I is satisfiable. O
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1.

Let R, be the ¢™ recursively enumerable subset of w x w in some standard enu-
meration. Let £ := {¢| R, is an equivalence relation on w}. Give the exact
location of E in the standard arithmetic hierarchy, and justify your answer.

( B

» ANSWER: The following shows that E is I19:

E(n) < Yx —=R,(x,x) A Yx Yy (R,(x,y) = R,(y,x)) A
Vx VyVz (Ru(x,¥) A Ru(y,2) = Ru(x,2))
= H(l) A Hg A Hg
= Hg

In order to show that this is optimal, it suffices to show that Tot <, E.
Define the function:

(x,y) if x=yand¢,(x) |
1 otherwise

h(e, x,y) = {

This function is recursive, so by s-m-n, there’s a total recursive s(x) such
that /i(e, x,y) = ¢5()(x,y). Then:

e e Tot = Vx (¢.(x) |) = Vx ({x,x) e dom (¢y))) = s(e) € E
e ¢ Tot = 3x (¢.(x) 1) = Ix ({x,x) ¢ dom (¢y))) = s(e) ¢ E

Hence ¢ € Tot iff s(¢) € E, which completes the reduction. O

Let 7, and 7, be axiomatizable extensions of PA. Suppose that 7, — Con (7)
and 7 + Con (Ty). Show that 7,, and T are inconsistent.

» ANSWER: Since both 7, and 7, are axiomatizable, and since we
have 7, — Con (T}), T\ + Prvz, ("Con (T,)"). Now, since T, + Con (Ty),
T, - —Prvg, ("—Con (T;)"). But T, — —Con (T;) — Prvg, ("—Con (T,)")
(since PA could prove —Con (7) if it were true), so 7| - Con(7,) by
modus tollens. Hence, by Godel’s second incompleteness theorem, 7 is
inconsistent. A similar argument shows 7, is inconsistent. O
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4.

Let 7 be a univerally axiomatized £-theory. Suppose 7 + Vx Jy 6(x,y) where
0 is quantifier-free. Show that there is a finite list 7,,...,7, of L-terms such
that 7 +— Vx \/"_, 0(x,1,(x)).

J=1

» ANSWER: Suppose there is no such finite list. Then for any finite list ¢
of (indices of) terms with one free variable, we’ll have a model A, = T
such that for some a; € A;, Ar = N\, —0(ac, ti(ar)).

Add a constant ¢ to £, and define the theory:

I'=Tu{-0(c,t(c))|tisan L U {c}-term}

Let Iy < I be a finite subset, say with —0(c,#;) € U for i € s (where
s is finite). Then we can take the model A, and interpret ¢ = a,.
Hence, I, is satisfiable. So by Compactness, I has a model.

Let B = I, and consider M = (¢”),. Then every element of M is
denoted by some closed term 7(c¢). Since —6(x,y) is quantifier-free, it’s
preserved in M, so M = —0(c,1(c)) for every term 7(x); and since every
element is denoted by a closed term 7(c), we have that M = Vy —6(c, y).
But since 7" has a universal axiomatization, it’s preserved under sub-
structures, so since 8 = 7, M = T. And since 7' + Vx dy 0(x,y),
M= Vx 3y 6(x,y), which can’t be since M = —3y 0(c,y). L O

For X < N, we say that X € St (M) iff for some formula ¢(y,x) and some
parameters a € M: ke X = M = o[k, a].
(a) Show that for M = PA, there is a nonrecursive A € St (M).

(b) Show that for all nonrecursive A < N, there is a M = PA such that
A¢ St(M).

( A

> ANSWER (a): Let A be the set of II%-formulae ¢(x) such that, for
some fixed k, M = 6(k). A is nonrecursive by Godel’s incompleteness
theorems, since Th (M) is complete. Hence, it suffices to show that
Ae St(M).
The idea will be to show that M has a nonstandard element a such
that a codes the set A. If so, then it follows that n € A iff M = (a), # 0,
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5.

and hence A € St (M).
With this in mind, define:

e(x)=3sVi<x ((s); #0 < Satpo (i, k))

That is, ¢(x) says “There is a sequence of numbers which picks out
exactly the I1%-formulae with godel numbers less than x satisfied by «.”
Trivially, PA - ¢(0). In addition, PA - Vx (¢(x) > ¢(x+1)): if mis a
sequence which codes all of the I19-formulae satisfied by k with godel
numbers less than r, then we can simply extend this sequence either by
0 (in the case where n + |1 doesn’t code a H‘l)-formula satisfied by k) or
by I (in the case where it does)—and PA is smart enough to know this.
Hence, by the induction scheme, PA |- Vx ¢(x). But then M = Vx ¢(x),
and hence every nonstandard element satisfies ¢. Thus, in M, there is
an element a € M which codes exactly the II%-formulae that hold of k
in M. O

\. J

a D

» ANSWER (b): Suppose there was a formula ¢(x, E) such that a € A iff
M = ¢(a, b). Using the same strategy as above with induction schema,
it follows that M = Vx 35 Vi < x((s); # 0 < ¢(i,b)). But then there
would be a nonstandard « € M that coded the set A in M. Hence, it
suffices to show that some model lacks a code for A, i.e. the type

p(x) = {(x); #0[ie A} u{(x);i =0[i¢ A}

is omitted in some model. We do this by showing that p(x) is not a
principal type.

Suppose p(x) is principal in every model of PA. Say it’s supported
by 6(x,b). Then both PA |- Vx (6(x) — (x); # 0) for all i € A, and
PA - Vx (0(x) — (x); = 0) for all i ¢ A. But in that case, we would
have a recursive procedure for determining whether or not a € A: just
start searching through the proofs of PA until you either find a proof
of Vx (6(x) — (x), # 0) or of Vx (6(x) — (x), = 0). Hence, if A is
nonrecursive, p(x) cannot be principal. O

(a) Let R < N’ be re, and assume that for all n,m, R(n,m) = W, # W,,.
Show there is an 7 such that for all m, —R(n, m).
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(b) LetS < N*ber.e, and assume that for all n, m, p, ¢, we have that S (n,m, p, q)
= (W, # W, v W, # W,). Show that there are », m such that for all p, g,

=S (n,m,p,q).

» ANSWER (a): Suppose not, i.e. suppose Vn im R(n,m). Define:
s(n) == um[R(n,m)]

This is recursive since R is re., and furthermore it’s total by our hy-
pothesis. That is, s(x) is a total recursive function such that for all e,
W, # W.). But this can’t be, since by the Recursion Theorem, there
must be some e such that W, = W,,), L. O

» ANSWER (b): Suppose not. We can redefine R from part (a) as
R(n,m) =S (n,n,m,m). So let s(x) be as in part (a). Define two new
functions:

These are again both total and recursive. And again, for all ¢,d, we
have Wy q) = Wy) # W, and Wy q) = Wy, # W,. But by the Double
Recursion Theorem, there are some ¢,d such that Wy., = W. and
We(ea) = Wa, L. O

6. Let T be a consistent, decidable theory in the language with one binary rela-
tion symbol R, and suppose that all models of 7" are infinite. Show that 7" has
a model A = (w, R) such that the full elementary diagram of A is recursive.

» ANSWER: This problem is just like this problem, page 46, except here
you don’t need to worry about omitting any types. O

7. Let T be a theory having infinite models. Show that there is a model A = T
and a collection of (proper) elementary submodels A, < A indexed by g € O
so that for ¢ < r we have A, < A, and A, = A.
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» ANSWER: Take a skolemization of 7', 7*, and then consider an
Ehrenfeucht-Mostowski model A = 7 whose spine is Q. Define A,
= Hull ({¢,| r < ¢}). We need to check:

e For each g € Q, A, < A. This is immediate, since A, is a Skolem
hull. /

e For each ¢,r € Q, whenever ¢ < r, A, < A,. This is also immedi-
ate, since the identity map is an elementary embedding. /

e For each g € Q, A, =~ A. Since any isomorphism between linear
orders induces an isomorphism on structures with those orders
as spines, and since there’s an isomorphism between Q and any
initial segment of Q, it follows that A, =~ A. / O

\. J

8. (a) Let U be a nonprincipal ultrafilter on w. Show that {¢| W, € U} is not
A9.
(b) Show that there is a nonprincipal ultrafilter U on w such that {¢| W, € U }
is AY.

» ANSWER (a): Suppose U is nonprincipal. Then U cannot contain
any finite sets, and must contain every cofinite set. We will show that
A= {e| W, € U} is II)-hard. Let B be a I1) set, i.e. for some recursive
relation R(x,y,z), B(n) < Vx 3y R(x,y,n). Define:

1 ifVx < s3yR(x,y,n)
g(n,s) = :
1 otherwise

This is recursive, so g(n,s) = ¢, (s) for some total recursive 7. Notice
that if g(n,k) 1, then for all ' > k, g(n, k') 1, i.e. g is either total or
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finite. Now:

ne B=Yx3dyR(x,y,n)
= Vs (g(n,s) = 1)
= Vs (¢ (5) 1)
= W;m =NandNe U, so
=t(n)e A
n¢ B=3xVy —R(x,y,n)
= JsVm = s (g(n,m) 1)
= JdsVm = s (¢ (m) 1)
= Wy ¢ U, since Wy, is finite
=1(n) ¢ A

Hence, n € B < t(n) € A, which completes the reduction.® O

» ANSWER (b): We construct a descending chain Ay 2> A} 2 A, © -
as follows. First, set A, := N. Next, given A,, check whether A, n W, is
infinite. If it is, set A,,. | := A, n W,.. Otherwise, set A, | = A,.

Let U, be the set of sets that are approximately A, (i.e. they're iden-
tical modulo finitely many things). Define U = | J, U;. We need to
check that:

° U is in fact an ultrafilter. We accounted for all Boolean combina-
tions of sets in U since we enumerated all of the r.e sets. /

e U is nonprincipal. We included all cofinite sets in U,. v/

e U is A). By checking the complexity of our construction, we no-
tice that at each stage, we only need to know whether A, n W, is
finite. This can be checked by Inf, and hence the whole process is
recursive in 0, i.e. the whole process is AJ. / O

. J

6 A similar reduction can be used to show that A is also Eg-hard, in which case A is Ag-hard. I
haven’t worked through all of the details, but I don’t think there’s any major roadblocks.
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9. Let (A, <) be a countable dense linear order without endpoints. Let St; (A)
be the set of 1-types of (A, <,a),,. For p,q € St; (A), we say p ~ g iff there
is an automorphism « : A — A for which:

p = ax(q) = {p(x,a(br),...,a(b)) [ ¢(x,b1,....ba) € ¢}

Show that there are 6 equivalence classes.
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1. Let E < N’ be an r.e equivalence relation.

(a) Show that if £ has finitely many equivalence classes, then E is recursive.

(b) Prove or refute: if each of E’s equivalence classes is finite, then E is

recursive.
» ANSWER (a): Suppose E has k-many equivalence classes with
e1,...,e, as representatives of each equivalence class. To determine

if a tuple {a,b) € E, start looking through the enumeration of E for
{a,b), and simultaneously start looking for the pair of tuples («, ¢;) and
(e;,b) for some 1 < i, j < k (youre guaranteed to find one eventually).
If you find {a,b), or if you find this pair of tuples so that i = j, then
{a,b) € E. Otherwise, you’ll find this pair of tuples so that i # j, so
{a,b) ¢ E. This procedure is algorithmic, so E is recursive. O

» ANSWER (b): The claim is false. Let A be a 2‘1) set, and start enumer-
ating the elements of A as a;, a», as, ... (with no repeats). We will build
an E which is r.e and whose equivalence classes are all finite, but that’s
not recursive.

Stage 0: Set £, = {(0,0)}.
Stage 1: Set E,=Eyu {<611,Cl|>}.
Stage 2s: Set E,; = E», | U {(s, s5)}. This ensures reflexivity is met.

Stage 2s + 1: Suppose E», has already been constructed. By design,
the first m = @ elements of A have been put in equivalence
classes of incremental size, with the largest class being of size 5. So
take the next s + I-many elements a,,,...,a,. ., and put them
together in an equivalence class. Enumerate all of the (finitely
many) ordered-pair combinations of this equivalence class, and
add them to E,, to make E-,. .

This process is clearly r.e, and furthermore each equivalence class
only has finitely many elements (either just one or s-many elements).
However, it’s not recursive. Suppose neither n,m € A. Then clearly
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the tuple (n,m) ¢ E. But at no stage of our construction can this be
concluded, since we can’t be certain that further in the construction
we’ll find either » or m in the next —5— elements of A. Hence, we don’t
have an effective procedure for determining whether (n,m)ec E.* O

s(s+1)

appears in the equivalence class whenever the first shows up in the enumeration.

¢ However, in the case where one of n,m € A, we can tell by just seeing if the other

(b)

Let 7' be a theory in a countable language having infinitely many 1-types.
Show that 7 has, up to isomorphism, more than one countable model.

Give an example of a theory 7" with just one 1-type, but infinitely many

countable models. Prove that your example works.

>

ANSWER (a): This is essentially one part of the Engeler-Ryll-
Nardzewski-Svenonius Theorem [see 2, Theorem 6.3.1]. We'll prove
the contrapositive, i.e. we'll show that if 7" is &,-categorical, then 7" has
only finitely many 1-types. This will be done in two steps.

Cramm (1): [If T is Ny-categorical, then every I-type over T is
principal.

» PROOF (1): Suppose for reductio that 7 is N-categorical, but
the 1-type p(x) over T is not principal. Then by the Omitting
Types Theorem, there’s a model A’ = T that omits p. By Down-
ward Lowenheim-Skolem, we can find a countable A < A’ that
also omits p. But since p is a type, there is a model 8’ = T that
realizes it, say with » € B’. Again by Downward Lowenheim-
Skolem, there is a countable 8 < %’ containing », and hence
realize p. But then A and B are two countable nonisomorphic
models of 7, L. O

CLAIM (2): If every l-type over T is principal, then there are
only finitely many 1-types over 7.
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~

» PROOF (2): Suppose for reductio that every l-type over T
is principal, but there are infinitely many I-types over 7. Let
0(x),6,(x),05(x), ... be the generators of these 1-types. Add a
new constant ¢ to the language and define:

C:=Tu{—6(c)|iecw}

Take a finite Iy < I'. Then I'; only mentions finitely many gener-
ators 6,(x),...,60,(x). Hence, we can let ¢ denote an object satis-
fying 6, ,(x) for instance, and so I', will be satisfiable. By Com-
pactness, I' is satisfiable, which means there’s another 1-type not
generated by any of the 6;’s, 1. O

\. J

Hence, if 7' is Ny-categorical, then there are at most finitely many
1-types over T'. O

\.

» ANSWER (b): Let £ = (s), where s is a unary function symbol, whose
intended interpretation is the successor function. We'll use “s"(x)” as
an abbreviation for s applied n-times to x (with “s°(x)” being just x).
Let 7 be the theory containing the following axioms:

e Vxdly(s'(y)=x)forallnew
o Vx,y (5"(x) = s"(y) & s"(x) = s"(y)) forall m,n € w
o Vx(s"(x)# x)forallnew-— {0}

T has as a model (Z, s), so T is consistent. Furthermore, any model
with countably many isolated Z-chains will also be a countable model
of T. Hence, T has infinitely many countable models.

Notice that for any « € M where M & T, then the substructure
containing « and all its successors and predecessors will generate a Z-
chain. We'll say that a ¢ € M is in «’s Z-chain if for some %, either
M s5(c) =aor M E sk(a) = c.

To show that 7" only has one 1-type, it suffices to show that for any
two elements a,b € M where M = T, there is an automorphism o on
M sending a — b. In that case, M = ¢(a) iff M = ¢(0(a)) iff M = ¢(b),
which means « and b satisfy the same 1-type.
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To prove this, I'll need to show the following claim:

CrAaiMm: T has quantifier-elimination.

N

» PROOF (CrAIM): We need to reduce the following formula
(where the indices are appropriately bound):

Ix /\ 5" (x) = ya A /\ s™(zp) = XA
b

a

/\ s (x) # ue A /\ s"(vy) # x
@ d

There are three cases to consider.

Case i: The big h-conjunct is non-empty. Then pick a z, and
replace every instance of x with s (z,). v/

Case ii: The big »-conjunct is empty, but the big a-conjunct is
non-empty. Then pick the y, with the least n,. Let ¢ be the
index for that y,. Rewrite the formula as follows:

/NS e) = ya A /\ Ye # 8" (1) A

a

ko<ne
I\ ST # e N\ S va) # e
G d

ke=n,
This will suffice. v

Case iii: Both the big a-conjunct and big /-conjunct are empty.
Then rewrite the formula as A, , s (v,) # u.. v

Either way, we’ve elminated the quantifiers. O

Let a,b € M for some M = T. There are three cases to consider.

Case 1: M = s"(a) = b for some n € w. Then define o as follows. If
¢ € M is such that either M = s*(¢) = a or M = s"(a) = ¢ for some

38




August 2012

k, then send ¢ — s"(c). Otherwise, send ¢ — ¢. (In other words, o
shifts ’s Z-chain, and leaves everything else alone.)

Now, take ¢,d € M and i, j € w. We want to show that M =
s'(c) = s/(d) iff M = s'(c(c)) = s/(o(d)). There are four subcases
to consider:

Subcase i: Neither ¢ nor d are in «’s Z-chain. Then M & s'(¢) =
s/(d) iff M= s'(a(c)) = s/(o(d)). v

Subcase ii: c is in @’s Z-chain, but d isn’t. Then M = s'(c) # s/(d).
Hence, M = s"™(c) # s/(d), so M = s'(a(c)) # s/(o(d)). v

Subcase iii: d is but ¢ isn’t. Similar to Subcase iii. v/

Subcase iv: Both ¢ and d are in a’s Z-chain. Then M & s'(c) =
s/(d) iff M s (c) = s77(d) iff M= s'(o(c)) = s/(a(d)).
In either subcase, o preserves all the quantifier-free formula,

so by quantifier-elimination, o is an automorphism. v/

Case 2: M = s"(b) = a for some n € w. Similar to Case 1, except shift

in the other direction. v/

Case 3: Neither of the above. Then define o as follows. Let ¢ € M.

If M & s"(b) = ¢, then map ¢ — s"(a). If M E s"(c) = b, then
map ¢ — 1y[s"(y) = a|. Similarly in the case where ¢ and b are
switched. Otherwise, map ¢ — ¢. (In other words, o swaps a’s
s-chain and »’s Z-chain.)

Now, take ¢,d € M and i/, j € w. Again, we want to show that
M= s'(c) = s/(d) iff M = s'(o(c)) = s/(o(d)). There are now five
subcases to consider:

Subcase i: ¢ and d are both in &’s Z-chain. Then ¢ and d are
mapped to elements the same distance apart, so we have that
M si(c) = s/(d) iff M s'(a(c)) = s/(o(d)). v

Subcase ii: ¢ is in «’s Z-chain, but J is in b’s Z-chain. So M =
s'(c) # s/(d). Then ¢ gets sent to an element in »’s Z-chain,
and d gets sent to element in «’s Z-chain, so M = s'(c(c)) #
s/(o(d)). v

Subcase iii: d is in «’s Z-chain, but ¢ is in b’s Z-chain. Similar to
Subcase ii. v/

Subcase iv: ¢ and d are both in b’s Z-chain. Similar to Subcase i.
V4
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Subcase v: Neither ¢ nor d are in either o’s or »’s Z-chain. Then
o(c) = cand o(d) = d, so M = s'(c) = s/(d) iff M =
s'(o(c)) = s/(o(d)). v

Again, o preserves quantifier-free formula, so by quantifier-

elimination, o is an automorphism. v/

Thus, 7 only has one 1-type. O

3. LetA:= {{e,n)| |W,| =n}.

(a) Show that A is A).
(b) Show that A is not X9 or II0.

> ANSWER (a): A is X as shown by the equivalence below.

le,nye A<= |[W,|=n
< 3s5[Seq(s) alh(s) =n AVi,j<n ((s); # (5);) A
Vi<n((s);ieW,)AVm (Vi<n((s);#m)— (m¢W,))]

To show that A is X:

(e,ny¢ A< (|W,] =m Am=#n)or |W,| =8
< Js,m [Seq(s) Alh(s)=mAan#mAaVi,j<n ((s); # (s);) A
Vi<n((s)ieW,)AVm (Vi<n((s);#m)— (m¢W,))]
vds,m [Seq(s) Alh(s)=man<mnaVi,j<m ((s); # (s);) A
Vi<m((s);eW,)]

Hence, A is A). O
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» ANSWER (b): If A were 2(1), then the following function would be
recursive:

fle,x) =

n if (e,nye A

1 otherwise
That is, if W, is finite, f(e,x) | and f(e,x) = |W,| (x here is a dummy
variable). By s-m-n, there’s a total recursive s(x) such that f(e,x) =
¢s(e)(x). By the Recursion Theorem, there is some fixed point ¢ such
that 5@y = Pa-

Consider W,. If W, is finite, then f(d,x) = |W,| for all x, in which
case the domain of ¢, is total (and so infinite). But since ¢,y = ¢,
that means W, is infinite, 1. Hence, W, must be infinite. So f(d, x) 1 for
all x. But then ¢, | is undefined for all x as well. And since ¢,,) = ¢4,
W, = &, L. Hence, f cannot be recursive, and so A cannot be X%.7

If A were I19, then let A(e,n) iff Vz R(e.n,z), for some recursive
R(x,y,z). The following function would then be recursive:

1 ifVz<xR(e,n,z)
gle,n,x) = :
1 otherwise

By s-m-n, there’s a total recursive s such that g(e,n, x) = ¢, (x). By
the Double Recursion Theorem, there exists a, b such that W, = W,
and W,(,,) = W, (using s for both functions; though we really only need
the first fixed point).

Consider W,. If W, is finite, then g(a,b,x) | for all x, and hence
Wiar) = W, = N, L. Hence, W, is infinite. But then, for some x,
—R(a, b, x), and hence for all z > x, —R(a,b,z). Thus, g(a,b,x) | for
only finitely many x if any. But then Wy, = W, is finite, 1. Hence, g
must not be recursive, and so A is not I1%. O

4. Let T be a theory with infinite models. Show that there is a chain of models
(A;| i < w) of T such that for each i € w, A; | < A;.

7 This problem, page 50, is a similar problem, though the proof is roughly the same.
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5.

6.

of models A, > App > Az > - -
more details.

> ANSWER: Take the skolemization of a completion of 7.
an Ehrenfeucht-Mostowski model A from the order-indiscernibles
{a,| g€ Q}. Let A, be the Skolem hull of {a,|r < ¢}. Then the chain

works. See this problem, page 31, for

Build

O

Show that there is a total function f : N — N such that:

f is strictly increasing
the range of f is r.e, and

whenever g : N — N is total and recursive, then 9n (g(n) < f(n)).

» ANSWER: Impossible: there is no such function f.

\.

» PROOF: Suppose [ is as above. Let /i be the recursive

enumeration of ran(f) (that lists ran(f) without repetitions,
for simplicity). Define g by induction so that g(n + 1) =
1 + max (h(0),...,h(n),g(n)). Clearly, this is total since / is to-
tal. But there can’t be an » such that g(n) < f(n); since f is
strictly increasing, f(n) is the n™ smallest member of ran (f), so
max (h(0),...,h(n — 1)) = f(n), in which case we’re guaranteed
that g(n) > f(n), L. O

J

Note: If the range is co-r.e instead, then this is possible, but I have
yet to fill in the details. ..

Let 7 be a theory of (7, s), where s(n) = n + 1 for all n € Z.

(@)
(b)
(©)

(d)

Show that 7 is recursively axiomatizable.

Show that 7 is not finitely axiomatizable.

Describe the countable models of 7. How many are there, up to isomor-

phism?

Describe the models of T of size k, where « is uncountable. How
are there, up to isomorphism?
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.

» ANSWER (a): We'll use “s"(x)” as an abbreviation for s applied ~-

times to x (with “s”(x)” being just x). Let U be the theory containing
the axioms:

e Vxdly(s'(y)=x)forallnew
o Vxy (5"(x) =s5"(y) « s"(x) = s"(y)) forall m,n € w
e Vx(s"(x)# x)forallnew-— {0}

This is the same theory used in this problem, page 36, part (b). Clearly,
(Z,s) = U,so U< T. To show that 7' < U, it suffices to show that U is
complete.

This is easily done. First, from our proof in part (b), here, page 38,
we showed that U has quantifier-elimination. Furthermore, we gave
a computable method for determining the quantifier-free equivalent
of a given formula. Second, notice that because the only nonlogical
symbol is a function symbol, the only quantifier-free sentences are T
and |. Hence, by quantifier-elimination, we have an effective decision
procedure for determining whether a sentence ¢ is equivalent to T or
. But this implies that for any sentence ¢, either U — ¢ or U |~ —p. O

(> ANSWER (b): Suppose 7 was finitely axiomatizable. Let ¢ be the

conjunction of these axioms, and let U be as given above.

CrLaM: U u {—¢} is satisfiable.

. J

» SUBPROOF: If ¢ is an axiomatization of 7', then ¢ must imply
that there are no s-loops. Hence, —¢ must be consistent with
there being s-loops (of any finite size, since the lack of s-loops of
any given size is not inconsistent).

So take a finite subset U’ < U u {—¢}. Then there will be a
maximum k for which U’ says “There are no s-loops of length £.”
Since the existence of s-loops are consistent with —¢, taking the
model of £+ 1 many things with a s-loop of length k+ 1 will model
U'. So by Compactness, U U {—¢} is satisfiable. O

Hence, U I/ ¢,s0 T 1 ¢, L. O
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» ANSWER (c): First:

.

Cramm: Every A = T is isomorphic to (L x Z, s) for some ).

» PROOF: Let A = T. Say that a,b € A are s-linked if for

some k € w, either A = s*(a) = b or A = s*(b) = a. Let A be the
length of the longest sequence of elements from A such that none
are s-linked to any of the other elements in the sequence. Let
k= | x Z| = max (w,\), and let B := (A x Z, s). We'll produce a
winning strategy for 7 in the game G, (A, B).

On round 0, it doesn’t matter which elements are picked.
Let’s suppose now that we’ve completed round y < «, and that
ao, . ...a, are the elements from A that have been chosen, while
b, ....b, are the elements of B that have been chosen.

Suppose on round y ", V plays a € A. There are three cases:

Case 1: s(q;) = a for some k € w and some i € y". Then 7 looks
for the b, that was picked on round i, and plays s*(b;). This
preserves the successor function. v/

Case 2: 5“(a) = a; for some k € w and some i € y". Similarly, J
plays the element ¢ € B such that s*(c) = b;. v/

Case 3: Neither of the above. Then - searches for an element
¢ € L which is not the first coordinate of any »;, and plays
{c¢,0). By definition of ), this can only happen \-many times,
so 1 will always be able to find such a ¢ when this happens.
And since {c,0) isn’t s-linked to any other b, this preserves
the successor function. v/

Next, suppose instead V chooses a b € B. Again, 7 runs through
the three subcases above. If b is s-linked to any of the b;, then -
plays as in Case 1 or 2. Otherwise, 7 searches for an « not s-linked
to any of the «;s played so far. Again, this is always possible, since
there are exactly A-many such 5;s where this will occur.

Thus, at the end of the game, we’ll have constructed a bijection
from A to « x Z that preserves the successor function. Hence, our
bijection will be an isomorphism. O
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7.

Note that clearly, if A ~ (L x Z,s), then A = T. Hence, models of
the form (A x Z, 5) are exactly the models of 7.

By the above claim, if A = T is countable, then A =~ (A x Z,s)
for some L < w. Hence, there are at most countably-many countable
models of 7. In fact, there are exactly X,-many. For suppose n,m < w
and n < m. Then if one tries to build an isomorphism from » x Z to
m x 7, one has to preserve the assignment of the successor function.
Hence, each of the n-many Z-chains from » x Z must be sent to n-many
distinct Z-chains in m x 7Z, leaving some Z-chains in m x Z left out.
Hence, (n x Z,s) % {m x Z, s). O

» ANSWER (d): If x > N, then the above argument shows how to con-
struct an isomorphism between any two models of 7' of size . Hence,
T is k-categorical. O

.

Let ¢(v) be a formulae in the language of PA.

(a) Suppose ¢ is X0, and PA |- Jv ¢(v). Show that PA - ¢(n) for some n.

(b) Give an example of a formula ¢(v) such that PA — Jv ¢(v), but for all
neN, PA £ ¢(n).

(c) Suppose ¢ is X and that 7 - 3v ¢(v), where 7' = PA is consistent. Does
it follow that 7' - ¢(n) for some n?

> ANSWER (a): Since PA is 0-sound, Jv ¢(v) must be true on N. Hence,
there must be some n € N such that ¢(n) is true. Furthermore, since
every model of PA is an end extension of IN, it follows that every model
of PA contains 7, and hence satisfies ¢(n). So PA - ¢(n). O

\.

> AnswERr (b): Let ¢(v) be the following formula:
¢(v) = (v =0« Con (PA)) A (Prfpa (v,"L") « —Con (PA))

First, we show that PA - Jv ¢(v). Reasoning in PA, suppose Con (PA).
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Then setting v = 0 satsifies the formula above, since by definition
Con (PA) — Vx —Prfpa (x,"L"); hence if Con (PA), then v ¢(v). Sup-
pose instead —Con (PA). Then by shifting quantifiers, we can let v just
be the proof of |. Hence, either way, there exists such a v so that ¢(v).
So now outside of PA again, we conclude PA |~ v ¢(v).

Second, we show that for all » € N, PA {/ ¢(n). If there were
such a n, then it couldn’t be 0, since in that case PA would prove
Con (PA) via ¢(n). So it would have to be the case that n # 0. But
then PA  Prfpa (n," L") <> —Con (PA). But PA can decide whether the
LHS is true, since Prfps (2, L") is A?. Hence, either PA | Prfpa (n, " L")
or PA |~ —Prfpa (n," L"). If it proves the latter, it’s inconsistent, since
PA | Con (PA) (via ¢(n)). If it proves the former, then since PA |- ¢(n),
PA - —Con (PA); and since PA only proves true X/, PA would be incon-
sistent. Hence, there cannot be an » such that PA - ¢(n). O

» ANSWER (c): It does not follow. Take 7' = PA + —Con (PA). By
definition, 7 + Jv Prfpa (v,"L"). Now suppose there were an n such
that 7' - Prfpa (n,"L"). Since 7 is consistent, 7" is II)-sound. And since
Prfea (2, "L") is AY (and so II?), it would follows that Prfps (n,"L") is
true. But then PA is inconsistent, and hence 7 is inconsistent, contrary
to supposition. Hence, taking ¢(v) := Prfpa (v, L") provides us with a
counterexample. O

8. Let £ be the language with one binary relation symbol R, and no other non-
logical symbols. Let 7 be a consistent, decidable /-theory. Let X~ be a non-
principal 1-type of 7" such that ¥ is decidable. Show that 7 has a model
A = {A,R™) that omits ¥ and is such that A and R” are both recursive.

r )

» ANSWER: The idea is to run through the construction of the Omitting
Types Theorem, using just the I-type X(x). Then, we’ll check that this
procedure is decidable at every step.

First, enumerate the formulae of %(x) as o(x), o (x), 02(x),.... Add
countably many new Henkin constants ¢, ¢, ¢», . .. to the language, and
enumerate the sentences of this expanded language as ¢, ¢1, ¢>,.... In
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what follows, let A, :=T, — T' (so that we can talk about the finitely
many sentences in [, — 7).

Stage 0: Set ) = 7.

Stage n.1: Having constructed I',, check to see if I', U {¢, } is consistent.
Ifitis, set I/, = I, U {g,}; otherwise, we set I = I',. This can be
done in a decidable way since 7 is deciable and A, is finite (i.e.
we can search for a proof of 7 A\ A, — —,).

Stage n.2: If ', # I’ and if ¢, = Jx 6, for some 6(x), then pick the first
unused Henkin constant ¢; and let I] = I, U {6(c;)}; otherwise set
[ = 1" . This can be done in a decidable way, since A/ is finite and
none of the ¢’s occur in 7.

Stage n.3: Begin the search for a o;(x) such that I'” {/ o(c,). This
is always possible because X is nonprincipal, for that means that
there cannot be a formula ¢/(x) such that 7 — Vx (¢(x) — o(x))
for every /i € w, and in particular, there can’t be a formula v/(x)
such that 7 +— [A A” A y(c,)] — oi(c,) for all i € w. Hence, for
some i € w, we must have I’ |/ oy(c,). Furthermore, since 7
and X(x) are decidable, we have a decidable procedure that will
guarantee we find one such o; eventually. Pick the first such o;
andsetl,.; =T" U {—oi(c,)}.

Finally, set I' = [ J,_ I';. By construction, I" is both consistent and
complete. Thus, we can use Downward Lowenheim-Skolem to obtain
a countable model A = I generated by the objects named by a Henkin
constant. But since the only nonlogical symbol in this language is R,
this model only contains elements named by a Henkin constant (noth-
ing else is “generated”). Hence, A will omit ¥ by construction. Further-
more, both A and R” will be decidable: we can simply run through the
construction above, which we’ve seen is all decidable, until you find the
sentence you're looking for (or its negation).® O

8 Technically, we’ll have to restrict A back down to the language £, but our decision procedures
can still take place in the expanded language.
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1.

3.

Let A be an infinite r.e set, and let R be an r.e partial order of A. Suppose R is
directed, that is, for all a,b € A, there is a ¢ such that R(a,¢) A R(b,c). Show
that there is a total recursive function f such that Vn R(f(n), f(n + 1)) and
Vae AdnR(a, f(n)).

» ANSWER: Enumerate the elements of A as ag,a;,a,.... We define
our function f by induction as follows. Set f(0) = ay. Given that
we've defined f(n), enumerate the elements of R and start searching
for an element b, such that R(a,,b,.,) and R(f(n),b,.,) (some such
b, is guaranteed to existed since R is directed). Set f(n + 1) = b, ;.
Clearly this f is total and recursive. By construction, if ¢; € A, then
R(a;, f(i + 1)). Furthermore, for all i, R(f(i), f(i + 1)). O

Show that for any infinite model A and cardinal « there is some elementary
extension 8 > A whose automorphism group has size at least «. [Hint: use
Ehrenfeucht-Mostowski models.]

a D

» ANSWER: The goal will be to show that there’s a sequence (X, <) of
order-indiscernibles in A with 2“-many order-preserving permutations.
We can then let 8 be an Ehrenfeucht-Mostowski model built from the
skolemization of Th (A) whose spine is (X, <). Each order-preserving
permutation on (X, <) will induce an automorphism on 5.

Consider the sequence (x x Q, <) with the lexicographical ordering.
Let each copy of Q be labeled as Q, for @ € . For each X < «, there
will be a (distinct) order-preserving permutation which just shifts the
elements in the copies of Q associated with ordinals in X by one. Since
there are 2 many subsets of «, there will be 2“-many order-preserving
permutations. Hence, building an Ehrenfeucht-Mostowski model from
k x Q will suffice. O

Let:

R, = {{a,b) e N*| 23" e W, }
L:= {¢ e N|R, is a linear order on N}

Show that L is I19-complete.
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» ANSWER: For the sake of concreteness, I'll assume they mean strict
linear order, though the solution is easily modified for non-strict linear
orders. First, L is I19:

e € L < R, is a linear order on w
< R, is irreflexive, asymmetric, transitive, and total
< Vx =R, (x,x) A Vx,y (R.(x,y) = —R,(y,x)) A
Vx, 3,2 (Re(X,3) A Re(¥,2) = Re(x,2)) A VX, y (Re(x,¥) v Re(y, x))
:H(I)AH(I)/\Hg/\Hg
= 1‘[(2)

Next, to show II)-hardness, Tot <,, L. Define the function:

gle,n) =

1 if 3k < n (n =2F3*"1 and ¢,.(k) |)
1 otherwise

This function is recursive, so by s-m-n, there’s a total recursive s(e) such
that for all x, g(e, x) = ¢, (x). But then:

e € Tot = Vx (¢g.(x) |)
= Vx (Fk (x = 2°3*"") & g(e, x) |)
= Vx (Fk (x = 23" & ¢ (x) 1)
= Rye) = {(n,n+ 1)| n e N}
= s(e) eL
e ¢ Tot = Ix (go(x) 1)
= Jx,k (x = 23" A g(e,x) 1)
= Ix,k (x = 23" A gy (x) 1)
= Ry isn’t total
= s(e) ¢ L

(If e ¢ Tot, then R, isn’t total becuase (k,k + 1) ¢ Ry, and by construc-
tion, we have that for all k, (k + 1,k) ¢ R.).) Hence ¢ € Tot iff s(¢) € L, so
L is I19-hard. O
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5.

Let £ be a countable first-order language, let {P;|i < w} be distinct new
predicate symbols (of any arity) and let £ := £ U {P;|i<n}. Let T be a
complete, consistent £“-theory, and suppose X(x) is a complete 1-type of 7,
and let 7" := T ~ £". Suppose that for each n < w, there is an /"-structure
A, such that A, = 7" and A, omits X"(x) = X(x) n L". Show that there is an
L“-structure that satisfies 7' but omits X (x).

» ANSWER: It suffices to show that X(x) is non-principal, for then there
will be a model of 7 that omits it. Suppose for reductio that %(x) is
supported by 6(x). Since 7 is complete, and since X(x) is consistent
with 7, T + Jx 6(x) and for all o € %(x), T + Vx (6(x) — o(x)). Since
proofs are finite, let’s say the proof of 3.x 6(x) only requires £”. Since T
is complete, 7" is also complete over L, and so Vx (6(x) — o (x)) € T"
for each o € " (x). Hence, 6(x) supports " (x) as well. But then X" (x)
can’t be omitted, 1. Hence, X(x) can’t be supported. O

Show that there is no partial recursive function ¢ such that whenever W, is
finite, y(e) | and |W,| < y(e).

» ANSWER: Suppose ¢ is recursive. Then the following is also recursive:

fleox) = {1 ify(e) | and |We| < y(e)
1 otherwise

Notice the following: If W, is finite, then f(e, x) is defined on cofinitely

many inputs for x. If W, is infinite, then f(e, x) is defined only on finitely

many inputs for .

This function is recursive, since W, , is finite, and since we know we
can check W,, < y(e) if we're given that (e) is defined. By s-m-n,
f(e.x) = ¢y (x). By the Recursion Theorem, for some d, ¢,4) = ¢a.

Now consider W,. If W, is finite, then ¢/(d) | and |W,| < ¢(d). So
by some stage 7, f(d,k) = ¢ya)(k) = ¢pa(k) = 1 for all k > ¢ (i.e. is
cofinite). But then W, is infinite, 1. So W, must be infinite. But then
by some stage ¢, |W,,| > ¥/(d), in which case f(d, x) = ¢yq)(x) = pa(x) is
undefined for all x > 7 (i.e. is finite). So then W, is finite, 1. Hence, f
can’t be recursive, and so |/ can’t be either. O
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6.

Let £ = {<}, and let T be the theory:

T := {y € L] for every nonempty finite linear order (X, <), (X, <) &= ¢}

Show that 7 is decidable.

» ANSWER: Note: Incomplete...

Notice that the class of finite linear orders isn’t first-order axiomatiz-
able. If there were such a theory, a quick compactness argument would
yield an infinite model of the theory. Thus, we can only hope to find an
axiomatization of the sentences true on all the finite linear orders (but
not on only the finite linear orders).

Let U be the theory of discrete linear orders with (both) endpoints.
Clearly, every finite linear order satisfies U/, so U < 7. Our solution,
then, has two parts. First, we must show that 7 < U. Second, we must
show that U is decidable.

To get either part, we first must show that U has a nice elimination
set. Let L,(x,y) (M,(x,y)) be the formula stating “There are at least (at
most) n-many things separating x and y (with x < y)” (see part (c) of
this problem, page 12). Let E, be the sentence stating “There are at
least n-many things”. Finally, let 7(x) state “x is a top element” and j3(x)
state “x is a bottom element”. Define:

Y= {p(X)| ¢isaliteral} u {L,(x,y), M,(x,y),E,| n€ w} u {7(x),B8(x)}

[ CrLAaM (1): X is an elimination set for U. ]
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7

» PrROOF: The proof is similar to part (c) of this problem, page

12. We just need to show that we can ignore the cases where
either 7(y), B(y), or E, appears inside the existential we’re seeking
to eliminate. We can clearly ignore the case where E, appears,
since this is just a sentence, and thus can be pulled outside the
existential. As for the other cases, we just consider the case where
7(y) appears (the 3(y) case is symmetric).

First, notice we can ignore the case where either the / con-
junct or d conjunct appears nonempty, since these are inconsis-
tent with 7(y) (and so the existential is equivalent to ). Next,
notice we can also ignore the case where the ¢ or f conjunct ap-
pears nonempty, since these are implied by 7(y). Thus, we're left
to deal with the following existential:

dy (T(y) A /\Lk,»(xwy) A /\Mne(xe’y)>

But then...

CLAIM (2): If T + ¢, then U | ¢. Thatis, T < U.

» PROOF: We proceed by induction on the complexity of ¢. Since

¢ is equivalent modulo U to a boolean combination of sentences
from X, it suffices to show that every such boolean combination
satisfies the claim.

Basis: The only non-trivial sentences from ¥ are E,. But 7' {/ E,
for any n > 1 (the n = 1 case is a validity), since for any
n > 1, there is a finite linear order of size smaller than 7.
Furthermore, 7' {/ —E, for any n. v/

Conjunction: Suppose ¢ := ¢ A 0, where both ¢/ and 0 satisfy the
claim. Then T -y A0 =T+ yand T + 6 = U + ¢ and
UO0=Uryrb.v

Negation:
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Finally, to show U is decidable, first note that U is recursively ax-
iomatized. Next, as shown above, UU has an elimination set, and there’s
an effecitve way of finding the eliminating sentence for any given sen-
tence ¢. But since the only non-trivial sentences in X are the E,s, it
follows that ¢ is equivalent so some boolean combination of these E,s.
But it’s straightforward to check where any such boolean combination
is satisfiable or unsatisfiable: we just check to see if the constraints that
boolean combination places on the size of a model is consistent. If such
a boolean combination is consistent, then it’s consistent with /. Hence,
U has an effective decision procedure. O

7. Let C = (C,+,Z) be a structure with the usual addition and having unary
predicates for each integer. Show that every C-definable (with parameters)
subset of |C| is either countable or co-countable. [You may assume basic facts

from

8. (a)

(b)

linear algebra.]

Let 7' be a consistent, recursively axiomatizable theory. Show that 7" has
a model A such that Th (A) is AY.

Show that there is a consistent, recursively axiomatizable 7" in some
language £, and a recursive set %(x) of L-formulae, such that 7" has
models omitting >(x), but whenever A is a model of 7' that omits X(x),
Th (A) is not arithmetic.

» ANSWER (a): Let ¢, s, ¢s,... be an enumeration of the sentences of

the language. The strategy is to construct a recursive binary tree with
a A)-branch. That branch will correspond to a consistent, complete A)
extension of 7, which can then be equated to be the theory of some
model of this extension.

Our tree is constructed in stages. At stage 0, we simply place 7 at
the root of the tree. At stage s, for s > 0, we extend each branch with
two branching nodes, one for ¢, and another for —¢,. Notice that the
construct of this tree is clearly recursive.

On this tree, we seek a A)-branch as follows. First, recall that proof
searches from recursively axiomatizable theories are X-procedures. Let
B be a X%-oracle which will tell us when a recursively axiomatiable
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theory I" proves a sentence ¢ (that is, (I',y/) € Biff [' - ). Our search
proceeds in stages.

Stage 1: Use oracle B to determine if 7 — —¢;. If it does, add —¢,

Stage s: Let ¢,...,, | be the sentences which have been added

recursively using B as an oracle. Thus, U is A), and so a model A = U
will have a A)-theory. O

to the branch and continue the search. Otherwise, add ¢, and
continue the search. Since 7 is consistent, 7 will remain consistent

if T |7£ Q1.

to the branch thus far. Since 7 is recursively axiomatizable,
T o {Yy,....,s 1} is as well. So use oracle B to determine if
T O{g,....0s 1} = —p,. Ifit does, add —¢, to the branch, and
continue the search. Otherwise, add ¢, to the branch and continue
the search.

This branch is a complete, consistent theory U © 7 that was found

» ANSWER (b): Let 7 = PA, and let X(x) = {x > n| n € N}. Since every
nonstandard model of PA is a proper end-extension of IN, it follows that
the only model of 7" that omits X(x) is the standard model. But we
know Th (V) is not arithmetic. O

9. (a)

(b)

Let 7 © PA be a recursively axiomatizable theory. Suppose 7' - ¢, where
¢ is I19. Show that if 7" is consistent, then ¢ is true.

Let ¢ be a II{ sentence such that PA + —Con(PA) - ¢. Show that
PA - ¢. [Hint: You may assume that the proof of the second incom-

pleteness theory for PA can be formalized in PA. Use this to show that
PA + Con (PA) - ¢.]

2
T

> ANSWER (a): Let 7 |- ¢, where ¢ is IT). Suppose for reductio that

isn’t true. So — is true. Since —¢ is a true X, PA - —¢. But then
— —, so T is inconsistent, 1. O
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> ANSWER (b): Suppose ¢ is II? and PA + —Con (PA) |- ¢, i.e. sup-
pose that PA — —Con (PA) — ¢. Reasoning in PA, suppose Con (PA),
and suppose for reductio —¢. Since —¢ is X9, Prves (—¢p). But since
we’ve proven —Con (PA) — ¢, we can prove —¢ — Con(PA), and
hence Prvps (—¢ — Con (PA)). So then Prvps (—¢) — Prvpa (Con (PA)).
But then Prvp, (Con(PA)), which can’t be since we’re supposing
Con (PA), and by Godel’s second incompleteness theorem, we know
that Con (PA) — —Prvpa (Con (PA)), L. So ¢. Moving back outside PA,
we’ve shown PA |~ Con (PA) — ¢, and so PA - . O
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1.

Let tp, (a/X) denote the complete type over X with respect to M realized
by @ € M, and let qftp,, (a/X) denote the “quantifier-free” type, i.e. the type
whose members are all quantifier-free. Let 7 be a theory. Show that the
following are equivalent:

(a) Forany M T, and any n-tuples a,b € M", if qftp,, (@) = qftp,, (b), then
tPp (@) =ty ().
(b) T has quantifier elimination.

> ANSWER (b = a): Suppose for a,b € M", qftp,, (@) = qftp,, (b). Let
¢(x) € tpy, (a). Since T has quantifier elimination, there is a quantifier-
free y(X) such that ' - VX (¢(x) < ¢(x)). Hence, y(x) € aftpy(a) =

aftp, (). Thus, ¥(X) € tpy, (b), s0 ¢(X) € tpy (b). The other direction
is symmetric. O

Note: The other direction, as stated, is more difficult, and I'm not sure if it’s
correct. There are two ways to fix the problem statement so that it’s more
manageable. One is to assume T is complete. Another is to assume that (a)
can be rephrased to say qftp,, (@) = dftpy (b)) = tpy (@) = tpy (b), where
M, N = T may be different. We deal with each modification below.

» ANSWER (a = b): Assuming 7 is complete: Let ¢(x) be a formula,
and let ¢,d be new constants added to the language. Then by (a),
T u{y(c) < ¥(d) | ¥ is quantifier-free } - ¢(c) < ¢(d). So by Compact-
ness, there’s some finite number of these formulae, say ¢, ..., ,, such
that T U {y1(c) < Y1(d), ..., ¥a(c) < ¥u(d)} F ¢(c) < ¢(d). Call o an
admissibility condition if it is a formula of the form A, yi(x) A A\, —¢;(X)
for i, j < nwith i # j, and let Z(x) be the set of all admissibility con-
ditions consistent with ¢(x). If X(x) = ¢, then T |- Vx —¢(X), so ¢(x)
is just equivalent to L. Otherwise, since |X(x)| is finite, \/, ., 0;(¢) is a
well-formed quantifier-free sentence. We claim:

[ CLAIM: T + ¢(c) < /5 0i(C). ]
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» PrOOF: Clearly 7' |- ¢(c) — \/,x 0:(c), since those exhaust the
possibilities consistent with ¢(c). As for the converse, suppose
T i/ \/,.s0i(c) — ¢(c). That means for at least one disjunct,
o(¢), T i+ or(c) — ¢(c). Since T is complete, T + o (c) A —¢(c),
and thus 7 + 3x (0 (X) A —¢(X)). But since o(x) € X(x), some
model of 7" must satisfy o (x) A ¢(x). Let A be such a model, with
say A = oy(a) A p(a) fora € A. Since T + 3x (0% (X) A —¢(X)),
there must be some b ¢ A such that A = o (b) n —¢(b). But
A = o(a) A ow(b), so a and b agree on each y; from above, and
hence by assumption they must agree on ¢, L. O

Since T doesn’t mention ¢, 7 + VX (p(X) < \/,z 0i(X)). O

> ANSWER (a = b): Assuming (a) is restated as, “For any A, B = T
and any a € A, b € B, qftps(a) = qftpg (b) = tps (@) = tpg (b).”
Let X(x) = {¢(X)| T + VX (¢(X) — ¢(x)) and y is quantifier-free}. Let
¢ be a set of new constants.

CLamM: T U X(c) - ¢(c)

» PROOF: Suppose not. Let A= T U X(c) u {—¢(c)}.

CLAaM: T u gftp4 () U {¢(c)} is satisfiable.

» SUBPROOF: Suppose not. Then for some 6(x) € gftp4 (¢),
T + 6(c) - —¢(c), and hence T — Vx (¢(x) - —6(X)). So
—6(x) € X(x), and thus A = —6(c). But then it follows that
—0(x) € qftp4 (¢), L. O

Let B = T u dftp, (¢) U {¢(c)}. Since B & gftp, (¢), we have
aftp4 (¢7) = oftpg (¢°). So by (a), tp4 (¢) = tpy (¢”), which can’t
be, since A = —¢(c), but B = ¢(c), L. O

Hence, for some 6(x) € £(x), T  Vx (6(x) — ¢(x)). O
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2. Prove that if a countable theory 7" is N,-categorical, then all of 7’s models are
No-saturated.

( A

» ANSWER: Let A = T. It suffices to show that for any finitely many
a € A, and for any I-type p(x) over a, p(x) is realized in A. Since T is
No-categorical, by the Engeler-Ryll-Nardzewski-Svenonius Theorem, all
of 7’s n-types (without parameters) must be principal.

CLAIM: p(x) is principal.

» PROOF: Define the following n-type without parameters:

q9(x%.y) = {p(x3) | ¢(x,a) € p(x) }

Since ¢ is an n-type without parameters, there’s a formula 6(x,y)
such that 7 - Vx,y (6(x,y) — ¢(x,y)) for all ¢ € g(x,y). But then
T+ VYx (6(x,a) — ¢(x,a)) for all ¢(x,a) € p(x), and hence 6(x, a)
supports p(x). O

J

Now, by Vaught’s Test, 7" is complete, and hence p(x) cannot be omit-
ted from any model of 7. Thus, A realizes p(x). O

3. Prove that there is no saturated model of the theory of dense linear orders
without endpoints of size X,.

> ANSWER: Suppose A was a saturated model of DLO of size N,. Let
Ay, Ay, Ay, ... be models of DLO such that for each i € w, |A;| = N; and
A = | J;A; (which we can do, since §,, is irregular). Since A is saturated,
it must realize the type p;(x) = {x > a|a € A;} for each i € w, say by
a;. Let p(x) = {x > a;| i € w}. By compactness, p(x) is satisfiable, so A
must also realize p(x). But it can’t, since A = | J,A;. L O

4. Let M = “2 be the set of countable binary sequences, and let M be the
structure with carrier set M in the language £ = {E, | n € w} where E, is a
binary relation symbol to be interpreted so that if a,b € M, E,(a, b) iff for all
i <n,a; = b; (where s; denotes the /™ element in the sequence s).
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5.

(@

(b)
(o)

Present a list of axioms for Th (M), and prove that your theory is com-
plete.

Describe all the 1-types realizes in M.
Describe all the 2-types realizes in M.

Prove the following:

(@

(b)

If 7 is an infinite, finitely branching recursive tree on N, then there is an
infinite branch f of 7 that is recursive in 0”.

There is a finitely branching recursive tree on N such that whenever f is
an infinite branch of 7', 0/ is recursive in f.

» ANSWER (a): Let 7 be an infinite, finitely branching recursive tree.
By Konig’s Lemma, there is an infinite branch in this tree. We’ll per-
form a A}-search for an infinite branch f in stages as follows. Suppose
we're at stage s of our search, having found f, := f | s. Enumerate the
nodes m,, ..., m, immediately extending f, (which can be done since f;
is finite, and 7 is recursive). Using Inf as an oracle, search through the
m;s for a node with infinitely-many nodes extending it. Extend f; to
include the first such m; you find. This will result in an infinite branch
that was found in a Aj-way. O

» ANSWER (b): Let A and B be two Aj-inseparable X sets (see this
problem, page 5). We build a binary tree 7" such that any A) branch
would separate A and B, which implies that there cannot be such a
branch.

stage s of the construction of our tree, we will extend every branch f
of height s by nodes 0 and 1 so long as:

(i) forallr<s,teA;= f(t)=1
(ii) forallz<s,te By= f(t) =0

If one of these conditions isn’t met, then don’t extend the branch any
further.

We construct our tree along Zg—constructions for sets A and B. At

At the end of the construction, we end up with an infinite binary
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tree, so there will be an infinite branch. However, if / is an infinite
branch, then at every stage s of the construction, if f(s) = 1, then f
was extended because either s € A, or because s € A U B. Similarly, if
f(s) = 0, then f was extended because either s € B or s € A U B. The
result, then, is that /' = y for some C > A where C n B = (/. Hence,
if / was constructed in a A)-way, C would A)-separate A and B, L. O

6. Show that there are a,b € N such that Vx (¢,(x) = b A ¢p(x) = a).

(> AnswER: Let f(x,y,2) = x. By s-m-n, there’s a recursive s(x,y) such
that f(x,y,2) = ¢, (2). Since s is recursive, by the Uniform Recursion
Theorem, there’s a recursive 7(x) such that ¢, = | ¢d,) = x|.

Now let g(x,y,z) = y, and let h(x,z) = g(x,#(x),z). By s-m-n, there’s
a recursive r(x) such that i(x,z) = ¢,(z) = t(x). By the Recursion
Theorem, there’s an « such that ¢,,) = |¢, = 7(a)|. Let|b = t(a) | Then
by the boxed equations, ¢, = ¢,,) = a and ¢, = t(a) = b. O

7. ForAcN? letA, = {y| (n,y)c A}. Show that P := {¢| Vn (W?), is finite} is
complete at some level of the hierarchy.

» ANSWER: First, we’ll show P is IT3. Let 7(e, n) be the recursive function
such that Wy, = (W), (it’s easy to check by s-m-n this is recursive).
Then:

< Vn (Wt(g,,,) is ﬁnite)
< Vn Fin(t(e,n))
=19

P(e) < Vn ((W7), is finite)

Next, we'll show that P is I19-hard by showing that P is £J-hard. Let
A be a X set. Then, since Inf is I1)-complete, there’s a recursive g(e, x)
such that:

A(e) < dnInf(g(e,n))
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So define the function:

1 if ¢g(e,n) (.)C) l

1 otherwise

fle,n, x) = {

This is recursive, so by s-m-n, there’s a recursive s such that f(e,n, x) =
s(e) (1, x). But then:

ec A= dnlinf(g(e,n))
= 3n ({x] dgen(x) | } is infinite)
= dn ({x| f(e,n,x) |} is infinite)
= In ({x] ¢ye)(n.x) |} is infinite)
= 3In (W )n is infinite)
= s(e) e P

e ¢ A = Vn Fin(g(e,n))
= Vn ({x| dg(eny(x) |} is finite)
= VYn ({x| f(e,n,x) |} is finite)
= Vn ({x| ¢s)(n,x) | } is finite)
= Vn (W \(8) is finite)

s(e) e P

This completes the reduction. O

. J

8. Let L be the language of PA, and let Val be the set of £-validities. Show
that Val is X9-complete. [You may assume that every recursive relation is
representable in Q.]

» ANSWER: Valis clearly X9, since we can recursively enumerate proofs
in first-order logic generally. To show that Val is 9-hard, we’ll show that
<,, Val. Since K is 20 it is weakly represented in Q by some formula,

(,0( ). But Q is finitely ax1omatizable, so where Q,, are the finitely many
axioms of Q, Q + 4 iff - A Q. — 6, ie. iff "'AQ, — 6 € Val
Hence, we have that n € K iff "/\ Q,, — ¢(n)' € Val, and since coding
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sentences into godel numbers can be done in a primitive recursive way;,
this complete the reduction. O

9. LetT :=PAU{Prvpa('6') — 6| 0is a sentence}. Let § := PA+ Con (PA). Show
that 7 t# Con (S) — Con (7).

r

» ANSWER: We call the schema Prvp ('6") — 6 the soundness schema.
We argue for two claims:

CrAIM (1): T is consistent.

» PROOF (1): If T is inconsistent, then for some y/,....¢, € T,

we’d have that PA — \/'_, (Prvea (") A —¢;). By distributivity,
PA - \/'_, Prvea ("¥;"). Since this is X%, and since PA is 2{-sound,
\/'_, Prvea (";') must be true. Hence, PA + ¢, for some i. But
since PA — \/'_, (Prvea ("¢;') A —¥), for at least one such y,, we
must have PA - —,, L. Hence, T is consistent. O

CLAIM (2): T+ Con(S).

» PROOF (2): First note that Prvpy ("1') — | is an instance

of the soundness schema, and so 7 - Con (PA). Now, reason-
ing in T, suppose —Con (PA + Con (PA)). Then PA - —Con (PA),
i.e. Prvpa ("—Con(PA)"). But then, by the soundness schema,
—Con (PA), and we already know Con(PA), L. Hence, T +
Con (PA+ Con(PA)),i.e. T — Con (S). O

Hence, if it were the case that 7 - Con(S) — Con(T), then we’d

have 7' + Con (7). So by Godel’s second incompleteness theorem, 7
would be inconsistent, 1. O

~
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1. Suppose E is a r.e equivalence relation with finitely many equivalence classes.
Show that E is recursive.

[> ANSWER: See part (a) of this problem, page 35. O ]

2. Prove that there is a r.e set having the property that its complement is infinite
but the set itself meets every infinite r.e set non-trivially (i.e. it’s not disjoint
with any infinite r.e set; i.e. its complement has no infinite r.e subset).

> ANSWER: We construct such a set A in stages as follows. Set A, = (7.
At stage s > 0, search through each of W, ,, W, ,..., W, and determine
whether any of W;; n A, | = (J. If there isn’t any, set A, = A, ;. If
there are some, search through the least such W, for an n > 2i. If there
is such an » in that W, , set A, = A, | U {n}; otherwise, go to the next
W;,. Repeat this process until you find such an » or run out of sets to
check, in which case, just set A, = A, ;.

At any stage, s, |A,| < s, and A, < {0,...,2s}; hence [A,| > |A,|. But
for any given infinite set W,, there will always be a stage at which an
element n > 2¢ is added to W,; and eventually, it will be the least such
W; with this property. Hence, A, is infinite, and A, n W, # & for some
s, if W, is infinite. O

3. Show that for any infinite model A, there is a proper elementary extension
B > A with an elementary embedding f : 8 — B such that A = [, /"(B).
[Hint: Ehrenfeucht-Mostowski]

Note: For most solutions we tried, the idea was to build an Ehrenfeucht-
Mostowski model from A, with indiscernibles ¢y, ¢,, c3, ..., and then have f
send ¢; — c¢;11. Then eventually ()2, f*(B) wouldn’t contain any of our
original indiscernibles. The problem with this approach, however, is that
there might be some element d which was added to the EM model that could
be written in an infinite number of ways as a term of our original order-
indiscernibles. If this were so, we could have this element appearing in f"(B)
for arbitrarily large n, and hence in the intersection of all f”(B). This solution
(credited to Alex Kruckman) gets around this worry.
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> ANSWER: Let M > A be |A| -saturated. We say a type p(%) is
finitely satisfiable in A if for every ¢(x) € p(x), there’s a a € A such
that A = ¢(a).

CLAIM (1): There is a type p(x) € St (M) such that p(x) is
finitely satisfiable in A but is not realized in M.

. J

» PROOF (1): Add a new constant ¢ to the language, and let:
p(c) = {—¢(c,a)|lae Mand A= —3Ix,yo(x,y)} U {c#m|me M}

Consider —¢(c,a),...,~p,(c,a) and ¢ # my,...,c # my. Since
A = —Ix, 5 ¢(x,y), and since only finitely many ;s are men-
tioned, we can always find another element » € A such that
M = b will satisfy each of these sentences. Thus, p(c) is sat-
isfiable by compactness, i.e. p(x) € St; (M). And clearly while it’s

finitely satisfiable in A, it’s not realized in M. O

So take a p(x) over M that’s finitely satisfiable in A but not realized
in M. For notational convenience, let p | X denote the set of formulae
in ¢ that only mention elements from X as parameters.

CLAIM (2): pis in_variant over A, i.e. for all c.de M_and acaA,
if tp, (C/A) =ty (d/A), then ¢(x,¢,a) € p(x) < ¢(x,d,a) € p(x).

» PROOF (2): Suppose ¢(x,c,a) € p(x) but ¢(x, d a) p(x).
Since p is complete, that means —¢(x,d,a) € p( ). Since, p(x)
is finitely satisfiable in A, and since ¢(x,c,a) A —¢(x,d, _) p(x),
there’s a b € A such that M = ¢(b,¢,a) A —¢(b,d,d). But b € A,
s0 ¢(b,X,a) € tpy((c/A) and yet —¢(b,X,a) € tp,, (d/A). Hence
tp (¢/A) # tpy (d/A). The other direction is similar. O

Add countably many constants by, by, b, ... to the language, and
add to Th (M) sentences p(by) | A and for each i € w p(biyy) |
A U {by,....b;}. Since M is |A|-saturated, all of these types are re-
alized in M.
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CrLAM (3): {b;| i€ w} is a set of order-indiscernibles over A.

» PROOF (3): By induction on the length of the sequence.

Basis: If M = ¢(b;,a) witha € A, then ¢(x,a) € p | A, and hence
(,0()(,5) Ep r Au {b(),.. .,bjfl}. So M &= go(b],ﬁ) Y

Induction: Suppose we already have that where i; < -+ <
in+1 and jl < < j”+1, tpMEbil""’bin/A) =
topy(bj,.....b;,/A). Allow me to write b; for the n-many

b, < --- < b,, and similarly for ;. Then by Claim (2),
we have that for any formula ¢(x,y, @), ¢(x, b;,a) € p(x) <
¢(x,bj,a) € p(x). So taking a formula ¢(x,y, a), we have:

€ Py (bj+1/Aa E./’)
X,5,a) € tppg (b), bjy1/A)

This completes the proof. O

Now, let 8 .= (A u {b;|icw}),, and let f : B — B send b; — b,
and keep A fixed. Clearly, A = ()", f"(B). Now, let ¢ € (), f"(B).
Then ¢ € B, so there must be a term 7, such that ¢ = 7 (El-), where
by < .-+ < b,. But ¢ € f""(B), so there must be some term 1,
such that ¢ = 1,(b;), where b, < b, < --- < b, . Hence, the for-
mula (where m is the length of X), ©:(X) = #,(b;) € tpy (b;/A,b;). Now
since by construction M = p | (A U {by,....b; _1})(b;,), we have that
t1(P1s- b1, Xm) = 1 (El-) € p(x). But since p is finitely satisfiable in A,

there must be some a,, € A such that M & #,(b;,....b;, ,,an) = t2(b;).
Hence, ti(x1,....Xu_1,an) = t(b;) € tpy (bj,....b;, ,/A,b;). Con-
tinuing in this way, we can get a sequence «,...,a, € A realizing
11(X) = t,(b;). But then ¢ = 1,(a) € A. O
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4.

Let £ = (0, +). Prove that the extension (Q, 0, +) < (R, 0, + ) is elementary.

» ANSWER: By Tarski-Vaught, it suffices to show that for every ¢(x, y),

and for any a € Q, if R = Jy ¢(a,y), then for some b € Q, R = ¢(a,b).
We will proceed by first showing that (R, 0, +) has quantifier elimina-
tion. Then we'll take ¢(a, y), replace it with its quantifier-free equiva-
lent (@, y), and then prove the claim by brute force.

Cramm: (R,0,+) has quantifier-elimination.

» ProOOF: Itsuffices to check that, where 6(X, y) is a conjunction of
literals, there’s a quantifier-free y/(x) such that for all a € R, R =
(3y 6(a,y) <> y(a)). The literals of this language are equivalent to
formulae of the form “y = >7" | ¢;x” or “y # > 7 | ¢;x;” (Where ‘c;x;’
is just an abbreviation for ‘x; + - - - + x;” with ¢,-many summands).?
If 6(x,y) contains any of the former kind, then we can take one
instance of “> " | c;a;” and replace y with it everywhere in 6(a, y).
So it suffices to check just the cases where 6(x, y) is a conjunction
of literals of the form “y # >]" | ¢;x;”. But in this case, since there
are only finitely many inequalties, there will always be such a y
in R, so we can simply replace 6(a, y) with T. O

@1 guess it should be more general than this, e.g. dy = >, ¢;x;, but there’s
ways of reducing those cases to cases where the literals are just of this form
(e.g. common multiples).

Now, take R = dJy ¢(a,y), with @ € Q, where we’ve ensured ¢ is
quantifier-free by quantifier-elimination. Thus, it suffices to consider
the case where ¢(a, y) is of the form:

n ny, n n
/\y = Z Ciy @i N /\)’ # Z Ci @
k=1 =l =1 =1
If there are any conjuncts in the big conjunction on the left, then what-
ever realizes this formula in R must be a rational number, since it is the
sum of finitely many rationals. On the other hand, if there aren’t any
conjuncts in the big conjunction on the left, then there will always be a
rational number that realizes these inequalities. Either way, there is a
b € Q such that R = ¢(a, b). O
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5. Show that there is no total function f for which f <; ¢’ and for every e, if
W, is finite, then f(e) = |W,|.

» ANSWER: See this problem, page 50. The “<” in that problem can be
changed to “=” without much change in the proof. For a slightly more
difficult problem, see this problem, page 40. O

6. Let L be a countable first-order language, let /' = £ U {P;| i < w} for some
new unary predicates {P;| i < w}, and let 7’ be a complete, consistent /-
theory. Suppose X(x) is a set of £ formulae such that for each n € w, 77 n
(L v {P;| i <n}) has a model omitting %(x). Prove that 7’ itself has a model
omitting X (x).

[> ANSWER: See this problem, page 49. O ]

7. Consider the semiring:
Z[x)sg = {f(x) €Z[x] | INeNVn >N (f(n) =0)}
Order Z [x|_, by:
f<gedh eZlxl.,of+th=g

Prove or disprove: (Z [x]_,, <, +, x,0,1) = PA.

' D

» ANSWER: Define the sentence:

p=Vx By (x=2-y)vIy(x=(2y) +1)]

We know that PA |- ¢. Consider, however, f(x) = x. f € Z[x|_, since
0 can witness N. But there is no g € Z[x]_, such that f = 2 - ¢, since
¢ must have coefficients from Z. And there is no g € Z[x|_, such that
f =2-g+1, since otherwise x — I = 2- g, which would again violate the
fact that ¢ must have coefficients from Z. Hence, [ is a counter-example
to ¢ in Z [x].,, so Z [x]., ¥ PA. O

8. Show by example (and prove that your example has the requisite properties)
that there is a complete theory 7' in a countable language for which there is
exactly one 1-type relative to 7 but continuum many 2-types.
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1. Suppose ¢(x,y) and ¢(y) are two L, -formulae. Let:

X(x) =Th(N) ufe(xn) [N =¢(n)} o {—e(xn) | N= —y(n)}

be a consistent (partial) 1-type. Prove that if M > N, and M = N, then there
is a b € M such that M = 2(b).

» ANSWER: Let M = Th (IV) be nonstandard. Consider the formula:

0(x) =3y Vz < x (¢(,2) < ¥(2))

That is, 6(n) roughly says, “There is a witness to the first n ¢-formulae
of X(x)” (where by the k" ¢-formula, I mean ¢(x, k) if N = (k) and
—p(x, k) otherwise).

If there were an m € N such that N £ 6(m), that would mean that
there is no witness to the first m ¢-formulae of X(x), i.e. some finite
subset of X(x) would be unsatisfiable, . Hence, NN = 6(m) for all m € N,
and so IV |= Vx 6(x). Since M = N, M = Vx 6(x). But then for any
nonstandard element » € M, M = 6(b), i.e. M has a witness to all of
the ¢-formulae in X(x). O

\ J

2. Show that there is a function f : N — N such that every arithmetically defin-
able set can be computed from any function g for which Vn (g(n) = f(n)).

3. Prove that Th (Z, <) is decidable.

» ANSWER: See this problem, page 12, part (a) for a proof that Th (Z, <)
is finitely axiomatizable and complete. From these two facts, it follows
that Th (Z, <) is decidable. O

4. Prove the following:

(a) If (T,<) is an infinite, finitely branching tree, then there is an infinite
subset S < 7 which is linearly ordered by <.

(b) There is a recursively finitely branching tree for which there is no infinite
recursive S < T linearly ordered by <.
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» ANSWER (a, b): See this problem, page 59 for both parts. To say
that § < 7 is linearly ordered just means that S is a branch of 7. Part
(a) is just Konig’s lemma, which is the proof given in part (a), except
with no concern regarding the complexity. Part (b) can be shown using

AY-inseparable r.e sets instead. O
5. We say that 7' eliminates 3~ if for each formula ¢(x,...,x,,yi,...,y.), there
is a formula 6(z) such that for all M = T, M = 6(b) < {ae M"| M = ¢(a,b) }
is infinite.

(a) Show that 7 eliminates 3% iff for each ¢(x,y), there is a number n, such
that for any model M = T and any b € M", if the set {a € M" | M = ¢(a,b) }
is finite, it has size at most n,.

(b) Show that if 7 is countable and 7" does not eliminate 3, then there is
an uncountable model M = 7 and a countably infinite definable (with
parameters) set X < M.

» ANSWER (a):

(<) Let ¢(x,y) be a formula, and let n, be as above. Define:

0(y) := 3Xo, ..., Xy, /\ (i # X;) A /\so(?i,i)

I,j<ny i=0

i#]
where X; # x; abbreviates \/,_, x;; # x;; (i.e. the tuple ¥; is not
completely identical to the tuple %,). Clearly, for any given b, if
there are infinitely many @ such that M = ¢(a, b), then M b_H(E).
Conversely, if M = 6(b), then the size of {a € M"| M = ¢(a,b) } is
at least n,, + 1, so it must be infinite, by the definition of n,. O

(=) Suppose 7T eliminates 7, and let ¢(x,y) be a formula, where 6(y)
is the eliminating formula. Suppose for reductio that there is no
such number 7,. That means for each k € w, there is a model

M, = T and a by € M, such that {a e M"| M = ¢(a,b;) } is finite,
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but has size greater than k. Now, add some new constants ¢ to the
language, and define:

I''=Tu{-0()} v {3, xex7c)|new}

stances of J_ X ¢(x,c). So pick the greatest k such that we have
3 X ¢(x,c) € TIh. By hypothesis, there is a b, € M, such that
{ae M| My = ¢(a,by)} is finite but greater than k. Hence, setting
clM" = b; will satisfy I'j. By Compactness, I is satisfiable. But then
for some N = T, N &= —0(c), while the set {ae N"| N & ¢(a,c)}
is infinite, contrary to the definition of 6, L. O

Take any finite Iy, < I'. It will only contain finitely many in-

6. Prove that if X < N is an infinite r.e set, then there is a recursive /' : X — X
such that f has no fixed points, but f o f = idy.

» ANSWER: Letay, aj,a,,... be a recursive enumeration (without repe-
titions) of X. Define f as follows:

_ Jaiy ifiiseven
f(al) - {Ll,‘l if i is odd

That is, / is a sequence of loops of length 2 between elements of X.
Then clearly f(f(a;)) = a;. Furthermore, the graph of f is r.e., since we
can just list the members of f as we list the members of X. Hence, f is
recursive. O

7. Give an example (with proof that your example works) of a universal model
which is not saturated.

» ANSWER: Given our analysis of this problem, page 12, we can use the
model (O~ x Z, <), where Q~ is the nonpositive half of Q. We know
that Q x Z can be embedding into O~ x Z, since Q can be embedded
into any proper initial segment of itself. But (Q~ x Z, <) isn’t saturated,
since it omits the type saying, “x is infinitely far ahead of {0,0)”. O
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8. Does there exist a consistent, recursive 7 = PA for which 7 -~ —Con (7)?
Justify your answer.

e

» ANSWER: Surprisingly, yes! Let 7 = PA + —Con (PA). By Godel’s
second incompleteness theorem, 7' is consistent; and clearly 7 is recur-
sive, since PA is. Furthermore, 7 - —Con (PA), and PA - —Con (PA) —
—Con (PA + —Con (PA)) (since PA knows that, if it’s inconsistent, so are
all of its extensions). Hence, 7  —Con (7).’ O

? An important point about this problem is that this is made possible by the fact that 7" is w-
inconsistent. Suppose 7" were w-consistent. Then 7" would be X-sound. But then, if 7  —Con (7',
—Con (T) would have to be true, 1. Hence, this situation can only arise if 7 is w-inconsistent. In
that case, the idea is that while T thinks it’s inconsistent, it’s actually wrong.
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1.

Prove or disprove: There is a partial recursive f(x) such that whenever W, is
finite, f(e) | and |W,| < f(e).

[ » ANSWER: See this problem, page 50. O ]

Let £ = {f}, where [ is a unary function symbol. Prove that the empty /-
theory has a model companion. (And I quote: “In principle, this could be
solved by abstract nonsense, but we would prefer to see an axiomatization of
the model companion and then a proof that your axiomatization works.”)

Let M = PA and let ¢(x,y) be an £,,-formula. Let ¢ € M with ¢ > 0, and let
S < {ae M|a<c}. Suppose that for all « € S, M = Jx ¢(x,a). Show that
thereisa b € M such thatforalla € S, M = 9x < b ¢(x,a).

» ANSWER: Define the formula (where ¢ and b are treated as variables
for readability):

O(u) :==3bVYa <u (Fx p(x,a) > Ix < b ¢(x,a))

We know that for all « € S, M = Jx ¢(x,a),* so if M = 0(c), then
M = 3bVa < uIx < b ¢(x,a). Thus, there’s a b such that foralla € §,
M = dx < b ¢(x,a). So we just need to show that M = 6(c).

In fact, we’ll show that M = Vu 6(u). First, note that PA - 6(0),
since the outermost bounded universal becomes trivial. Next, we want
to show that PA -~ Vu (6(u) — 6(u+ 1)). Reasoning in PA, suppose
for reductio that 6(u) is true, but not ¢(x + 1). That means that for all
b, there’s an ¢ < u + 1 such that ¢(x,a) has a witness, but not one
less than 5. Let these witnesses be d,, ...,d, (where v < u). Consider
d :=max (dy,...,d,) + 1. By hypothesis, there must be some a < u + 1
which has a witness to ¢(x, a), but not one less than . But regardless
of the a we pick, if ¢(x,a) has a witness, then d, < d is a witness, L.
Hence, moving outside of PA, we conclude PA — Yu (0(u) — 0(u + 1)).

So by the induction schema, PA - Vu 6(u), from which it follows
that M = 6(c). O

¢ It’s okay if there’s such ¢ where a ¢ S.

72



January 2010

4. LetE:= {¢| W, = &}. Prove or disprove: Inf <; E.

e

~

> ANSWER: See this problem, page 81, for a proof that Inf is IT9-
complete. As for E:

Ele) e W, =
< Vx (x¢ W,)
= I

That is, E is at most I19. So Inf £ E. O

5. Let M be an £-structure, and for each i € w, let A, < M. Let £ = £ U
{P;| i€ w}, where P; is a new unary predicate symbol, and let M’ be the
expansion of M to £ via the interpretation PIM' = A;. Assume that for each
finite F < w, (). A: < M. Show that there is an N’ > M’ for which there is
a B < N, where N := N’ | L, such that:

(i) foreachicw, Bc PV

(D) BnM=),A

» ANSWER: Add a new unary predicate B to the language, and consider
the following theory:

T = EIDiag (M) u {Vx (B(x) = Pi(x)) | i€ w}

U {ﬁB(a) aceM — mAi} U {B(a) ac mAi}
U {\ﬁ [(/\ B(xe) A 3y w(%,y)> — 3y (B(y) A w(iy))]

k=1

) is
an /-
formul

Suppose T is satisfiable. Then there’s an N’ > M satisfying 7. By
Tarski-Vaught, 8 := (B"'), < N'. Also, BY' < P)'. Now, if a € B n M,
since BN (M — (e, Ai) = &, a € (i, Ai» i.e. BA M < (., Ai. And if
ae()).,A, then clearly « € M and a € BY'. Hence, it suffices to show
that 7 is finitely satisfiable.
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If ' < T is a finite number of sentences not in ElDiag (M), then
it only mentions finitely-many P;’s, say with i/ € F for some finite F.
Hence, if we take BN = [, A;, which by hypothesis gives us that
(B"), < M, then M expanded in this way will model I". O

6. For the sake of this problem, you may assume that every finite partial order
can be extended to a linear order.

(a) Show that, if (A, R) is a partial order, then there is a linear order < on A
such that <> R.

(b) Show that, if (w,R) is a recursive partial order, then there is a A‘z) set
S < w”such that R € S and (w, S ) is a linear order.

» ANSWER (a): Let £ = {R,<}, and define the £-theory T to be the
theory containing ElDiag (A) which says that < is a linear order and
that R ©<. Since any finite partial order can be extended to a linear
order, every finite subset of 7" will be consistent. So by Compactness, T
will be satisfiable, say by 8 = 7. But then (A,R” | A, <?| A) will be a
linear order extending A. O

\. J

7. Give an example of a model M (you choose the language) such that there are
elements a,b € M, a model N > M, and an automorphism o : N — N such
that o-(a) = b, but there is no automorphism 7 : M — M for which 7(a) = b.

» ANSWER: See this problem, page 21. Part (b) gives several examples
of a model in which there is an element a € M that’s not definable, and
yet every automorphism of M fixes a. But part (a) shows that, if a is
not definable, we can always elementarily extend to another model N
in which there is an automorphism that doesn’t fix a. O

8. Let M = PA.

(a) Show that there is no ¢(x,y) such that for every definable set D < M,
there is some parameter b € M for which D = {a € M| M = ¢(a,b)}.
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(b) Show that for any ¢ € M, there is a formula 6(x,y) such that for any
definable D < {a e M |0 < a < ¢}, there is a parameter d € M where
D={aeM| Mk6(a,d)}.

» ANSWER (a): Consider the set C = {ae M| M &= —¢(a,a)}. C is
clearly a definable set (by formula —¢(x, x)), so by hypothesis, there’s
abeMsuchthat C = {ae M| M= ¢(a,b)}. Butbe C < M ¢(b,b)
< M —p(b,b) < b¢C, . O

\. J

i » ANSWER (b): The idea is that this parameter will be a code for D. Let
c € M be fixed, and define 6(x,y) := p, | y (where p; is the i prime).
Let D < ¢ be defined by ¢(x). Suppose we show that:

PA - V2 3y ¥x < z (¢(x) <> 6(x,))

Then we have M = 3y Vx < ¢ (¢(x) < 6(x,y)). Hence, for some d € M,
M = Vx < ¢ (¢(x) < 0(x,d)). Butif b > ¢, then M = —¢(b) and
(by appropriately picking our &) M = —6(b,d). Hence, actually, we
have M = Vx (¢(x) < 6(x,d)). Thus, D = {ae M| M 6(a,d)}. So it
suffices to show:

~

CLAIM: PA R Vz3dyVx <z (p(x) < 6(x,y)).

. J

~

» PROOF: By induction. Clearly, PA — Jy Vx < 0 (¢(x) <> 6(x,y)).
Next, reasoning in PA, suppose Jy Vx < n (¢(x) < 0(x,y)). Ei-
ther n satisfies ¢ or it doesn’t. If it does, then taking the wit-
ness for Vx < n (¢(x) <> 0(x,y)), we can extend it by multiply-
ing it by p, to obtain a witness for Vx < n + 1 (p(x) < 0(x,y)).
If it doesn’t, then our original witness will automatically give
us as a witness to Vx < n + 1 (¢(x) <> 6(x,y)). Either way,
JyVx<n+1 (p(x) < 0(x,y)). O

This completes the proof. O
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1.

Prove or disprove the following statements:

(a) There exists an e such that W, = {x| ¢.(x) 1}.
(b) There exists an e such that W, = {x| ¢,(e) | }.

> AnswER (a): False. By definition, W, = dom (¢.) = {x| ¢.(x) | }. O

\. J

» ANSWER (b): True. Define:

f@ﬂ_{lﬁm@l

1 otherwise

This function is recursive, so by s-m-n, there’s a total recursive s(x) such
that f(e,x) = ¢y (x), and thus W) = {x| ¢.(e) | }. By the Recursion
Theorem, there’s an « such that ¢, = ¢,. Thus, W, = {x| ¢.(a) | }. O

\. J

Show that every countable structure in a countable language has an -
homogeneous elementary extension.

( )

» ANSWER: Let A be a countable structure. We will build an elementary
chain of models A < B) < B, < B; < --- such that |B;| = N, for each i,
and such that if tp, (@) = tpg, (b), then for each c € B;, there’sad € B,
such that tp,; | (@,¢) = tpy,, (b.d). It will follow that 8 := |, B; will be
a No-homogeneous countable elementary extension of A.

Suppose we’ve built B; with the desired properties. First, list all the
tuples (@, b;, c;y € B! such that tpg (@) = tpg (b). We will build an
“inner” elementary chain of models 5, ; as follows. First, set B, = B,.
Next, given B j, since tpg, (a;) = tpg,, (b;), and since tpg,, (@j,c;) is a
consistent type, there is an elementary extension %, ., > 3;; (which
we can ensure is countable by Downward Léwenheim-Skolem) such
that for some d; € B;;.1, tpg,,., (@;.c;) = tpg,., (bjd;). Finally, take
Bt = UJ. B, ;. Then clearly B, has the desired properties. O
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3. If A, B are sets of natural numbers, define the symmetric difference operation
asAAB:=(A—B)u(B—A). Say A ~ B, thatis A is almost B, if AA B is finite.
Finally, define the set P:= {(x,y)| W, ~ W, }. Show that P is X}-complete.
[Hint: Show that Cof is X3-complete first.]

> ANSWER: Suppose Cof is X9-complete. We’ll show that P is X3, and
that Cof <,, P. First:

P(a,b) & W, ~ W,
< (W, — W) u (W, — W,) is finite
< 3s,n [Seq(s) Alh(s) =nAVi,j<n((s) # (s);)A
Vx(xe W, Ax¢ W, o Ji<n((s); =x))]
A vice versa for a and b
= 35,0 (A A A A AY A VX (T A 20 o AD))
= 2‘3)

Next, let W, = N for some fixed e. Let f(x) = {(x,e). Clearly f is
recursive, and x € Cof iff f(x) € P. Hence, so long as we can show Cof
is X9-complete, we'll have a proof that P is as well.

The proof of Cof being X9-complete is rather involved. It involves
another priority-esque argument...But showing Cof is X} is at least
straightforward: in defining Cof(e¢), just replace “x € W, A x ¢ W,,” with
“x ¢ W,”. This will still be X3, as is easy to check. O

\ J

4. Let T be the theory of discrete linear orders without endpoints.

(a) Describe the prime model of 7', and justify your answer.
(b) Describe the countably saturated model of 7', and justify your answer.

(c) Give an example of a countably homogeneous model of 7' that’s neither
prime nor saturated. (FALSE)

» ANSWER (a,b): See this problem, page 12. There, part (a) proves
background needed for parts (b) and (c). O
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» ANSWER (c): Not possible. Suppose A = T is homogeneous, and that
A # (Z,<). Thus, for some nontrivial linear order L, A =~ (L x Z, <).
We will show that L =~ Q, from which it will follow that A is saturated.
To show this, since Q is the only countable dense linear order without
endpoints, it suffices to show that L is dense and without endpoints.

Before proceeding, recall from part (c) of this problem, page 12 that
T has an elimination set. This elimination set only contains formulae
with two free variables; hence, every formula with one free variable
must be equivalent to some boolean combination of these formulae
where the first and second variables are the same. But (by induction)
every such boolean combination is equivalent modulo 7 to either T or
1. Hence, every element in A satisfies the same exact formulae with
one free variable, viz. the formulae which are equivalent to T.

e 3

CrAmM (1): L doesn’t have a top element.

» PROOF (1): Suppose for reductio that r € L is a top element.
Let a,b € A be such that «’s first coordinate isn’t 7, but »’s first
coordinate is. By the above remarks, the map f : {a} — A such
that « — b is partial elementary. And since A is homogeneous, it
follows there’s an automorphism o = f.

Since o is an automorphism, it preserves order, and hence it
must send » to some element above b (since ¢ < b). But a,b
satisfy the 2-type saying “x is infinitely far behind y”; thus, so
must o (a),o(b). Hence, o(b) must be infinitely far ahead of 5.
But this is impossible since b4 lies on the last Z-chain in A, 1. O

1 X
?
a o/\ob/—\ X
X
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A similar proof can be used to show L has no bottom element.

CLAIM (2): L is dense.

» PROOF (2): Suppose for reductio that there are two elements
s, € L with s < ¢ such that there is no r € L where s < r and
r < t. Let a,b,c € A be elements such that «’s first coordinate is
s, b’s is t, and ¢’s is some element above 7 (which by Claim (1)
we know must be possible). Let f : {a,c¢} — A map a — a and
¢ — b. By part (c) of this problem, 12, a, ¢ satisfy the same 2-type
as a, b, viz. the one which says “x is infinitely far below y”. Hence,
f is partial elementary, and since A is homogeneous, there is an
automorphism o 2 f.

Since o is an automorphism, it must preserve order, and hence
it must send b to some element between « and b. o(b) can’t be on
the same Z-chain as o(¢) = b, since otherwise o (b), o(c¢) would
not satisfy the type saying “x is infinitely far below y”, whereas b, ¢
would. And o (b) can’t be on the same Z-chain as o (a) = «, since
o(a),o(b) would also not satisfy that type, whereas «,» would.
Hence, o (b) must lie on a Z-chain between « and 5. But there is
no such Z-chain, since there is no element between s and 7, 1.. O

Hence, L = Q. O

5. Let M = PA be nonstandard, and let X < N. Show that if there is an a € M
which codes X, then for all nonstandard b, there is a ¢ < b that codes X.
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» ANSWER: If X is finite, then some finite sequence s will code X,

and hence for all nonstandard 5, s < b, in which case the claim is
immediate. So suppose X is infinite, i.e. it’s coded by some nonstandard
a. Consider the formula (with parameter «):

¢(x,a) =Seq(x) Adn (Ih(x) =nAVm <n (pn|x < pnla))

where p, is the k" prime, which is something that can be expressed in
the language of PA. Then this will be true for arbitrarily large x: for
any k € N such that M = ¢(k, a), there will always be a k¥’ € N such that
M=K >k~ ¢(K,a), just by considering the sequence which includes
the next prime p, such that n € X. Hence, by overspill, there must be
arbitrarily small ¢ such that M = ¢(c,a), i.e. for all nonstandard b,
there is a ¢ < b such that ¢ codes X. O

6. Let 7 be a countable theory with infinite models. Show that there is an
uncountable model M = T such that, up to isomorphism, there are only

countably many finitely generated substructures of M.

7. Show that there exists a set A recursive in 0’ which is not a boolean combina-

tion of r.e sets.

\.

» ANSWER: Just as we can enumerate the sentences of a proposi-

tional language, so too we can enumerate the boolean combinations
of re sets W,. Let these boolean combinations be enumerated by

By, B, B,, .... Clearly, each B; is recursive in 0. But now define the
set C == {e¢|e ¢ B,} (akin to K). Since each B, is recursive in 0/, so is C.
But if C = By, then B,(d) iff C(d) iff —=B,(d), L. O

8. Show that Th (Z,0, +) is decidable.
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1.

2.

Prove or disprove: If A < B, and a € B — A, then « is not definable.

r

» ANSWER: True. Suppose a were definable with ¢(x). That is, 8 &
Vx (x = a < ¢(x)). Then B £ 3lx ¢(x). However, since A < B,
A= B, s0 A = dlx ¢(x). But then there’s an element ¢’ € A such that
A = ¢(d'). Again, since A < B, B = ¢(d'). Buta # d, since d’ € A and
a¢ A. Hence B H Vx (p(x) - x =a), L. O

~

Show that Inf is I19-complete.

r

» ANSWER: First, to show Inf is I19:

Inf(e) < W, is infinite
< Vnds [Seq(s) Alh(s) >nAVi,j <n(i#j—(s)# (s);)A
Vi<n((s)eW,)]
=Vn3s (A A AY A AV A X9)
= Hg

To show that it’s I19-hard, let A be II) so that A(e) iff Vx Jy R(x,y.e)
where R is A). Define the function:

1 ifYx <ndyR(x,ye)
fle,n) = :
1 otherwise

This function is recursive, so by s-m-n, there’s a total recursive s such

81




January 2009

3.

that f(e,n) = ¢4.)(n). But then:

ec A= VYx3IyR(x,y,e)
= Vx (f(e,x) |)
= Vx (¢s0) (%) 1)
= s(e) € Inf

e¢ A= IxVy —R(x,y,e)
= Vz>x(fle,2) 1)
= |Wv(e)‘ <Ny
= s(e) ¢ Inf

This completes the reduction. O

(@)

(b)

Does every nonstandard model of PA have a proper elementary substruc-

ture?

Does every nonstandard model of PA have a proper X{-elementary sub-

structure?

| 2

ANSWER (a): No. Let M = PA be nonstandard. Consider the set X :=
{a € M| a is definable without parameters}, and let A := (X),,. Clearly
A < M. To show that it'’s elementary, suppose M = Jx ¢(x,a), for
some parameters a € X. Then since M = PA, and since for any (X, y),
PA - Vx (3y w(x,y) — Jy (¥(x,y) A Vz < y —¢(%,7))), we have that
M= dx (¢(x,a) A Yy < x —¢(y,a)). But this witness must be unique, so
the formula ¢(x,a) A ¥y < x —¢(y,a) must define an element of M, say
b. Hence, b € X, so A = ¢(b,a) A Yy < x —¢(b,a). It follows that A is
an elementary substructure.

Since A < M, A = PA. But if A’ < A is a proper substructure,
it cannot be elementary, as it will be missing elements which are re-
quired by the definable elements of M. That is, there will be a formula
¢(x) such that A = Jx ¢(x), but A’ £ —3x ¢(x). So A’ couldn’t sat-
isfy exactly the same formulae as A, so it couldn’t be an elementary
substructure. Thus, A is a nonstandard model of PA with no proper
elementary substructure. O
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4.

Show that any theory with Skolem functions has quantifier elimination.

» ANSWER: Suppose a theory 7" has Skolem functions. So for every
¢(x,y), there is a term 7,(x) such that 7 - Vx (3y ¢(x,y) < ¢(x, 1,(%)).
But this is exactly what we need to prove quantifier elimination. Sup-
pose we're trying to show that dy o(x, y) is equivalent to a quantifier-
free formula modulo 7, where (X, y) = /] ¢i(x,y) A /\i —;(x,y), and
where ¢;, ¢, are all quantifier-free. Since 7' has Skolem functions,
T + 3dy o(x,y) < o(x,1,(x)) for some term #,. But then o(x,17,(x))
is quantifier free, so o (%, 7, (x)) will work. O

We say a linear order (L, <) is scattered if for all « < b < ¢, the interval
(a,b) either is empty or has a maximal element, and the interval (b, ¢) either
is empty or has a minimal element. Let (L, <) be a scattered linear order.
Show that Th (L, <) is recursive.

A linear order (L, <) is anti-well-ordered if every nonempty X < L has
a maximal element. Prove or disprove: if (I, <) is a countable anti-well-
ordered linear order, then there is a countable anti-well-ordered linear order
(K,<)such that (L, <) = (K, <).

» ANSWER: If (L, <) is an uncountable anti-well-ordered linear order,
then by Downward Lowenheim-Skolem, there is a countable linear or-
der (K, <) with (K, <) < (L,<) (and hence (K, <) = (L, <)). Now,
this doesn’t immediately guarantee that K is anti-well-ordered, since
there is no first-order sentence which is true exactly of the linear or-
ders that are anti-well-ordered. But thankfully, this isn’t an issue: if we
take a subset X < K, then a fortiori X < L, and hence X has a maximal
element. So consequently, K is anti-well-ordered as well. O

(a) Show that there is a pair of recursively inseparable r.e sets.

(b) Show that any pair of disjoint I1Y sets is recursively separable (i.e. not
recursively inseparable).
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» ANSWER (a): See this problem, page 5, part (a). The proof is basi-
cally the same, except you don’t need to relativize to oracles, so C will
be A, and A, B will be X°. O

» ANSWER (b): First, we make the following claim:

CraM: If A, B are XY sets, then there are X sets A’, B’ such that
ACABCBANB=¢g,andA’ UB —A U B.

» PrOOF: Enumerate A and B in stages, so that A = [ J A, and
B = | J, B,. We construct A" and B’ in stages alongside A and B.
At stage 0, we let A) = By = Aj = B, = ¢J. Now, suppose we’'ve
constructed A/ and B,.

If 1 = 25, then for stage 7 + 1, we continue our construction of
A to A, ;. Let a,., be the new element added to A, ;. If a,., is
notin B, thenset A] | = Al U {a,,,}. Otherwise, set A’ | = A}. In

. / _ p/
either case, take B/ | = B,.

If 1 = 25 + 1, then for stage 7 + 1, we continue our construction
of B to B,,,;. Let b, be the new element added to B, ;. If
by is not in A, then set B/, = B, u {b,,,}. Otherwise, set

t+1
B, = Bj. In either case, take A, = A]. It’s easy to check that

+1
this construction works. O

Now, consider two disjoint I10 sets, A and B. Then their complements
A and B are £%. Hence, by the above claim, there are two sets A’ < A
and B'  Bsuchthat A’ nB' = @and A’ UB' = AUB. Since An B = (7,
AuB =N,s0A’UB" = N. And since A" and B’ were disjoint, A’U B’ = N.
But A’ = N — B/, so:

A=N-B=NnB=guB=F

(It’s easier to see this if you draw out a Venn diagram; these calculations
are also easy to figure out if you just remember that these set-theoretic
operations correspond exactly to boolean operations.) Similarly, B’ =
A’. Hence, both A’ and B’ are recursive. Furthermore, since A’ < A,
AcA,and A’ nB= @ sinceA’'nB = ¢fand B< B'. O
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9.

Let £ = {0, <), and consider the structure R which interprets < as the usual
ordering and Q“ = Q. Find an axiomatization of Th (R, <, Q), and show that
it is complete.

» ANSWER: Let 7 be the theory:

T = DLOU{Vxy(x<yArQ(x)AQ(y) mIz(x<zrz<yA Q2)))}
U{Vx 3y (Q(y) A x <y),Yx Iy (Q(Y) Ay < x)}
U{Vx 3y (=00) A x <y),Vx Iy (=0() Ay < x)}

We’ll show that 7' has quantifier elimination. Since the only atomic
sentences of this language are T and |, it will follow that 7" is complete.
To show quantifier elimination, we consider the formula:

Ix /\y,- < XA /‘\X<Z.//\ (—)0(x)

We don’t need to consider the negated atomics, y, < x and x < z,, since
these are equivalent to y, > x and x > z,,, which we can eliminate. Fur-
thermore, according to 7', if Jx [ Ay <xA /\jx <z j], then there’s a
witness that’s rational (since this formula only references finitely many
v;s and z;s, and since Q according to 7 is both dense and coinitial/co-
final with R). Similarly, there will be such a number that is irrational.
Hence, we can just consider the formula:

dx /\y,-<XA/\x<Zj
i J

But then by quantifier elimination of DLO, this is equivalent to just
/\.; Vi < z;- Hence, T has quantifier elimination. O

Prove that there are sets A, B such that A <; B and B < A.

» ANSWER: See this problem, page 8. Since you don’t need the sets to
be r.e, the shorter Kleene-Post proof suffices. O
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1. Prove or refute:

(a) If A and B are XY, then there’s a A‘f set C that separates them.
(b) If A and B are I19, then there’s a A9 set C that separates them.

» ANSWER (a,b): See this problem, page 83. For part (b) of this
problem, use part (b) of that problem, except relativize everything to
an oracle. O

2. Let T be a decidable theory in a finite language with no finite models. Show
that 7 has a model A with universe N such that {(p(x),a)| A = ¢(a)} is re-
cursive.

» ANSWER: We proceed by simply constructing the canonical model for
T, and show that at every step of the construction is decidable. We’'ll
achieve a complete theory X~ which yields a countable canonical model
(so the unvierse could just be IV). And since the model is canonical, ev-
ery object is named by a closed term ¢. Hence, satisfaction of formulae
reduces to satisfaction of sentences.

First, we add constants ¢, ¢|, ¢, ... to the language and enumerate
the sentences ¢, ¢, ¢, ... of the expanded language. At stage 0, we
set Xy := T. At stage n + 1, check to see if &, U {¢,} is consistent. This
can be done recursively since I', := ¥, — T is finite and 7 is decidable
(so you can just search for a proof of AT, A ¢, — | from 7). If it
isn’t consistent, set %, | := %,. Otherwise, if ¢, := Jx ¥(x) for some ¢,
then pick the least ¢; not yet used in X, and set %, . | =%, U {¢,, ¥(c;)}.
Otherwise, set %, | := %, U {¢,}. Finally, set >, := X := [ J. Z..

Since each step in this procedure is decidable, we’ll get a canonical
model A where Th (A) = %, which is decidable. And since A is the
canonical model, every element of A is denoted by a closed term of the
expanded language. Hence, satisfaction in A reduces to the truth of
sentences (in the expanded language) in A, so {{¢(X),a)| A = ¢(a)} is
decidable. O
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3.

Show that there is a nonstandard M = PA and a nonstandard a« € M such
that « is definable in M.

» ANSWER: Let M = PA + —Con(PA). Then there’s a nonstandard
a € M such that M = Prfpa (a,"L"). Since for any ¢(x), PA - 3x ¢(x) —
dx (p(x) A Yy < x —p(y)), it follows there must be a least such a € M.
But then that least such « will be defined by ¢(x) A Vy < x —p(x). O

Let A be a model, and let a,b € A be two distinct elements. Show that the
following are equivalent:

(a) There is a definable function f for which f(a) = b.

(b) For any B8 > A, and any automorphism o : 8 — B, if o(a) = a, then
o(b) = b.

' )

» ANSWER:

(a) = (b): Suppose there is such an f that is definable, say by formula
¢(x,y). Suppose also that 8 > A and that ¢ : 8 — B is an
automorphism that fixes «. Then:

B f(a) = b ¢(a,b)

Thus, o (b) = b. O

(b) = (a): Suppose there is no definable function f sending a — b.
Add a new constant ¢ to the language, and define the theory:

T = EIDiag (A) u {b # ¢} U {p(a,c) | A = ¢(a,b)}

CramM: T is finitely satisfiable. ]
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» PROOF:  Suppose not. Then there is a list of some
¢i1(a,c),...,pq(a,c) where EIDiag (A) - N, ¢i(a,c) — b = c.
Hence, EIDiag (A) - Yz (/\, ¢i(a,z) — b = z). Now, let:

Y(x,y) = /\wf(x,y) A Yz (/\goi(x,z) —y= z)

By hypothesis, A = A, ¢i(a,b), so EIDiag (A) + b =
¢ — /\;¢ila,c). Hence, EIDiag(A) - b = ¢ — yla,c),
since ElDiag (A) +~ Vz (/\;¢i(a,z) > b=7z). Further-
more, EIDiag(A) + y(a,c) — b = ¢, since trivially
EIDiag (A) + w(a,c) — A, ¢i(a,c). Finally, EIDiag (A) -
Va,y,y W(xy) Av(x,y) —>y=y), since y(x,u) implies
Niwi(x,u), so if y(x,y) and y(x,y), A\, @i(x,y) A /\;ei(x.Y),
which implies y = y’. Hence, ¢(x,y) defines a function f
where f(a) = b, L. O

Hence, T is satisfiable by compactness. So there’s an elemen-
tary extension 8 > A such and an automorphism o : 8 — 8 such
that o-(a) = a and o (b) = ¢, with ¢ # b. O

5. Let £ = {U,V}, where U,V are unary predicates. Describe all the complete
theories of £. Show that they are distinct and exhaust all the possibilities.

» ANSWER: The four things that such a complete /-theory needs to
specify are the number of elements in U A V, U A -V, =U A V, and
—U n —V. The theory in any particular case can either say that there
are exactly n-many things for some particular n € w, or that there are
at least n-many things for all » € w.

To show that any such theory 7 is complete, note that there are
only two cases: either 7" has only infinite models, or 7 has only finite
models of a certain size k. If the former, then any two models of 7
will be isomorphic, since we can build the isomorphism just be sending
each element in U A V of the first model to a unique element in U A V
in the second, thus producing a bijection.
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If 7 only has infinite models, then by Downward Lowenheim-Skolem
it has countable models. But any two countable models will also be
isomorphic: just build the isomorphism as before, knowing that if any
case above is infinite, then the fact that the model is countable will
guarantee that you can still build a bijection between the two models.
Hence, 7 is w-categorical, and so complete by Vaught’s test. O

6. Show that Fin is X}-complete.

» ANSWER: To show that Fin is :

Fin(e) < W, is finite
< Js,n[Seq(s) Alh(s) =nAVi,j<n((s) # (s);)A
Vx (xe W, — Ji<n((s);=x))]
=3s,n (AY A A A AD AV (2 — AY))
= 23

To show it’s X5-hard, let A(e) iff 9x Vy R(e, x, y), where R is A?. Define:

1 if Yu < x 3y —R(e,u,y)
h(e,x) =

T otherwise

This is recursive, since R is AY, so let /i(e, x) = ¢(,)(y). Then:

ec A= dxVyR(e,x,y) = IxVz> x (h(e,z) 1) = s(e) € Fin
e¢ A= Vx3Iy —R(e,x,y) = Yx (h(e,x) |) = s(e) ¢ Fin

This completes the reduction. O

\. J

7. LetA={(A,If, g, ... beastructure in a finite language £, where / is a unary
predicate and f, g are binary functions. Let 7 be an isomorphism between
(N, +,xyand (I, f | I,g | I). Show that {n('¢") | A = ¢} is not definable over
A without parameters.
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» ANSWER: [ will simplify the notation and let A = (A, N, +, x,...)
with N © A. Since £ is finite, the natural numbers can still code up
formulae from /£, so we’ll let "¢' denote the godel number in this new
coding system of ¢. The result, then, is that we want to show that
{"¢"| A= ¢} is not definable (without parameters).

Suppose it were definable, let’s say by the formula 7(x). In other
words, A = 7('¢') < A = ¢ (do you smell a Liar?). Suppose that
something like the Fixed-Point Lemma holds for A—that is, suppose
for every formula ¢(x), there’s a sentence ¢ such that A = § < ¢('¢").
Then it follows that there’s a sentence ) such that A = L < —7("L").
But since AE L < 7("\'), Ak 7("\') < —=7("\"), L.

CrAaiM: For any formula ¢(x), there is a sentence ¢ such that
AES < ().

~

» PROOF: Since coding for £ can still be done recursively on N,
define the following recursive function on IN:

‘O(n)" ifv="6(x)
0 otherwise

sub(n,v) = {

Now, N E sub(n,'0") = z < z = "0(n)" for all 6 and n. Hence,

Ak N(n) — (sub(n,'0') =z z="0(n)"),ie. AE=sub(n, 6') =
7z <> z=0(n)" for all n € N. Now define:

a(x) = dy (sub(x,x) =y A ¢(y))

6 = a('a")
Then:
Ak 6Ty (sub("a',"a’) =y A (y))
<3dy (y="a("a) Ae®))
< ¢('6")
Hence A =6 < ¢('6"). -
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This completes the proof. Note that it works because the proof of
the Fixed Point Lemma doesn’t depend on ¢ being in the language of
PA: we don’t use anything about ¢ for the proof. O

8. Give an example of first-order languages £ < £ and complete theories 7 <
7" with 7 in £ and 77 in £’ such that 77 is X |-categorical, but 7' is not. Show
that your example works.

a )

» ANSWER: Let £ = {E}, where E is a binary predicate, and let T
be the theory stating that £ is an equivalence relation, and that there
are exactly two equivalence classes, both of which are infinite. 7 is
No-categorical, since if A is a countable model of 7, its two equiva-
lence classes must both be countably infinite, so there will be a bijec-
tion between those equivalence calsses and those of any other count-
able model. Hence, by Vaught’s test, 7' is complete. However, 7 is
not N;-categorical. One uncountable model of 7 is the one with two
uncountable equivalence classes; another nonisomorphic model is one
with an uncountable class and a countable class.

Now, let £ = {E., f,c}, where f is unary function symbol and ¢ is
a constant, and let 7’ be like the theory 7" except it states that f is a
bijection between the two classes, with ¢ being in the domain of f. That
is, 7" will contain:
° T
e “fis a bijection”
e “For all x, if E(x,c), then f(x) = y where —E(x,y). Otherwise,

f(x) = »7

We can extend the reasoning as before in 7" to show that 7"’ is ;-
categorical. One just simply has to make sure that, when building
the isomorphism 7%, h(c™) = ¢, and that h(f"(a)) maps to f*(h(a)),
which is easy enough. Hence, 7" is complete. But now, in fact, it is also
N -categorical, since there must be a bijection between the two equiv-

alence classes, so the model of 7 where one class is countable is no
longer a model of 7". O
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1.

Prove or disprove: if M = PA is nonstandard, and « € M is nonstandard, then
a is not definable.

[> ANSWER: False. See here, page 87. O ]

Show that Rec is X3-complete.

» ANSWER: The proof is rather involved, and I won’t give it here. See
Soare [6] for a proof. It showing that (29, 119) <, (Cof, Cpl), where Cpl
is the set of indices that are Turing equivalent to K. There’s also a proof
in Rogers [5] that uses a priority argument directly. O

Let £ be a countable language, and let 7 be a theory with infinite models.
Show that there is a model of size w, in which at most w-many |-types are
realized.

a )

» ANSWER: Let 7* be the skolemization of 7, and let A = T* be
countable.” Clearly, A is a model which can only realize countably
many I-types.

Let M be an Ehrenfeucht-Mostowski model of EIDiag (A) with spine
(wy,<). Consider B := Hull ({¢, | @ € w, }). B still satisfies the same
quantifier-free formulae over A as A (since the elements of a were de-
noted by constants in ElIDiag (A), and thus included in the generated
substructure), so 8 > A since 7™ is a Skolem theory. Hence, the ele-
ments of A all still satisfy the same 1-types, so it suffices to check that
the elements of B — A only satisfy countably many more new [-types.

Notice that the c,s all satisfy the same 1-type (since each ¢, is an
order-indiscernible sequence of length one). Hence, at most one more
I-type could have been realized by them. So it suffices to check that
only countably many more |-types are realized by elements of the form
t(c,a), where 7 is a term and @ € A. And since there are only countably
terms (countable language) and only countably many finite sequences
of elements from A (A is countable), it suffices to check that fixing ¢
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and a, there are only countably I-types realized by elements of the
form #(c,a) (since then there would only be at most Nf) = Ny many
more |-types realized).

Since ¢,s are order-indiscernibles, only the relative order of ¢ mat-
ters. That is, if 7(x,a) is our term, and the length of x is n, there are
only at most n! different new 1-types that could be realized as a result
of plugging in the order-indiscernible constants for x.>¢ Since this ap-
plies for each n € w, that means that there can only be 8, many more
1-types realized by elements of the form 7(c, a).

Hence, there are only at most &, many I-types realized in 8. O

@ The skolemized language is still countable, so this is allowed by Downward
Loéwenheim-Skolem.

b It might help to give an example. Suppose the term (x|, x,, x3,4) has 3 opens
slots. Then there are at most six more new I-types that could be realized, based on
the following terms:

) t(cl ,C2,C3, E) ° [(6'2, Cc3,Cq, E)
. t(cy,c3,¢2,0) . t(c3, c1,¢2,Q)
° l(Cz,C[,C3,a) ° 1(03,02,61,5)

Since any other sequence of length three is order-indiscernible, it doesn’t mat-
ter which constants appear instead of ¢y, ¢;, c3. For instance, the 1-type realized by
t(cy,¢3,¢0,a) is the same as the type realized by #(cs, ¢, 20, a) since ¢s < ¢ < ¢, is
the same relative order as ¢; < ¢ < ¢3.

¢ The way EM models are constructed in Hodges [2], this isn’t strictly necessary
aparently: there should only be one n-type realized by each of these terms. But I'm
following Marker [4] here.

4. (a) Show that there is a pair of recursively inseparable r.e sets.

(b) Show that any pair of disjoint I1" sets is recursively separable.

» ANSWER (a,b): See this problem, page 5, for part (a), and this
problem, page 83, for part (b). O

5. Let £ = {U}, where U is a unary predicate. Prove or disprove: the set of
validities in £ is recursive.
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» ANSWER: True. We’ll prove this by showing that this language has the
finite model property: that is, if an /-sentence ¢ is satisfiable, then it
has a finite model. In fact, we’ll be able to show that it has a model of
size no greater than 21, where » is the number of variables occurring
in ¢. It will follow that we can determine whether ¢ is valid just be
running through the finitely many finite models of size no greater than
2n and just check whether —¢ holds in any of them.

Let A be an £-structure, with some tuple of elements a, b € A of the
same length. We’ll say that @ and » match just in case:

(i) Foreachi, A= U(w)iff A= U(b;)
(ii) Foreachi, j,a; =a;iff b, = b;.

Now, let n be the number of variables occurring in ¢. If A has no more
than n-many elements satisfying (—)U(x), then let B, (B_) be the subset
of A containing those elements; otherwise, let B, (B_) contain exactly
n-many elements satisfying (—)U(x). Let B = B, u B_, and define a
model 8 := (B, U | B). Notice that 8 is of size no greater than 2x.

[ CLAIM: B o. ]
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e 3

» PrROOF: We will proceed by induction on the complexity of
subformulae in ¢. We’ll show that if @ € A and » € B match,
then for any subformula () of ¢ (with say k < n free variables,
possibly k = 0), A & y(a) iff B = y(b).

Atomic: Either /(x) is U(x) or ¢/(x,y) is x = y. In the former
case, since a matches b, and since U? = U* | B, A = Ula)
iff B = U(b). In the latter case, since a;,a, matches by, b,
then a; = ap lffb] = bz. V4

Boolean Combos: Straightforward. /

Existential: y(x) is Jy 6(x,y), where the inductive hypothesis
holds for 6(x,y). Then A = y(a) iff for some ¢ € A, A =
0(a,c). Note that k < n, where k is the length of x. By
inductive hypothesis, if there is a ¢ such that @, ¢ matches
b, d, then we'll have A = (a, c) iff B = 6(b,d). So it suffices
to show that there is a d such that @, ¢ matches b, d.

If ¢ = a; for some i < k, then we can just set d = b, as
well. Otherwise, suppose WLOG that A = U(c) (the same
reasoning applies to —U(x)). Either |U”| < n, or |U"| > n.
If |U”| = m < n, then by construction U” = U”. Since
there are strictly less than m-many of these elements among
a, there will be strictly less than m-many of these elements
among the matching », and hence there will be another
d € U not among b. If |U”| > n, then there will be exactly
n-many things in U”. But since k < n, there will still be
a d € U” not among b (since there’s only k-many). Either
way, there’s a d such that @, ¢ matches b,d. v

Hence, by induction, A = ¢(a) iff B = ¢(b). O

\. J

Since B was of size at most 27, this completes the proof.'° O

. J

10 The proof could easily be extended to show that monadic first-order logic is decidable. If £
had, say, finitely many unary predicates P;(x),..., P,,(x), then by revising the first clause in the
definition of matching to say A = P;(«;) iff A = P;(b;) for all j < m, the proof should go through
as expected, but now the size of your model needs to be n - 2¢, where k is the number of predicates
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6. Show that the class of existentially closed groups is not first-order axiomatiz-
able.

7. Suppose f is a total recursive function. Prove or disprove:

(a) There is an e such that Wy, = {e}.
(b) There is an e such that W, = {f(e)}.

» ANSWER (a): False. We'll construct a counterexample. Let:

h(e, x) 1 ifx<e+1
h(e, x) = .
1 otherwise

Clearly, % is recursive, so there’s a total recursive function f such that
h(e, x) = ¢ (x). But then Wy(,) = {0,...,e + 1} for all e. So |Wy(,)| =2
for all ¢, and hence there can be no such ¢ where Wy, = {e}. a

» ANSWER (b): True. Define:

he.x) — {1 if x = f(e)

|1 otherwise

Clearly £ is recursive, and so there is a total recursive s such that
h(e,x) = ¢e(x). Thatis, Wy, = {f(e)} for all e. But then, by the
Recursion theorem, there’s a d such that W,y = W, = {f(d)}. O

8. Let T be a ¥ -categorical theory in a countable language £, and let A = T be
countably infinite. Determine the cardinality of the automorphism group of
A. Prove you're right.

occurring in ¢. You'll then need to ensure that every combination of literals among the P;s have at
most 7-many elements in 8. This could easily extend further for the case where you have countably
infinitely many unary predicates.
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9.

» ANSWER: We argue that the cardinality of the automorphism group
must be 2™ as follows. Let 7* be the skolemization of 7 and let A* be
the model expanded from A. Note that A* is still countable.

Consider a countable Ehrenfeucht-Mostowski model M of
ElDiag (A*) whose spine is w x Q (with lexicographical ordering), and
consider B := Hull ({¢, | a € w x Q}). B is still countable, and still sat-
isfies 7*, since in Skolem theories every substructure is elementary.
Hence, B | £ =~ A, so it suffices to show that there are 2™ automor-
phisms on 8 (as those will correspond to automorphisms on A).

For every X < w, we define a mapping oy on w x Q as follows:

g+ 1) ifneX
ox({n, q)) = .

{n,q) otherwise
That is, oy just shifts the elements in the Q-chains associated with el-
ements in X. This preserves the order of w x Q, and so is an automor-
phism on oy. Since automorphisms on the order extend to automor-
phisms on the model, and since there are 2™-many distinct subsets of
w, it follows that there are 2% -many distinct automorphisms on 8. [

Prove or disprove: addition is definable in (Q, -).

» ANSWER: False. We will show that there is an automorphism o (i.e.
a map preserving multiplication) that does not preserve addition as
follows. If ¢ € Q is reduced form can be written as ¢ = m/n, where
m,n € N and the prime factorization of m is m = 2¢ - 3% . ... pf", then
our mapping will sent g — n//n where m’' = 2.3k ... Pl (that is, just
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switch the exponents of 2 and 3). Then:*

U(q.r)_a(@.”ﬁ>

iy i

ki h.3h . ..., pl
. 2kl'3k2"'”pi_2l 35 pj’
n, n,

(’21 1.32 Zooooo pil rp/)
=g

Ny - N,
dkatl . gkitlh ... .pfﬂr’i ..... pif
Ng - Ny

l,

ky Rk ..., ki b .3l ... .. J

228 ri 22-3 P;
Ny n,

Hence o preserves multiplication, and thus is an automorphism on
(Q, -). But it doesn’t preserve addition: for instance, o-(2 +2) = o(4) =
o(2%) = 3* =9, whereas 0(2) + 0(2) =3 + 3 = 6. O

¢ WLOG, assume i < ; here.
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